Recursion Theory - Relationships Between Definability, Proof and Computability

Relationships Between Definability, Proof and Computability

There are close relationships between the Turing degree of a set of natural numbers and the difficulty (in terms of the arithmetical hierarchy) of defining that set using a first-order formula. One such relationship is made precise by Post's theorem. A weaker relationship was demonstrated by Kurt Gödel in the proofs of his completeness theorem and incompleteness theorems. Gödel's proofs show that the set of logical consequences of an effective first-order theory is a recursively enumerable set, and that if the theory is strong enough this set will be uncomputable. Similarly, Tarski's indefinability theorem can be interpreted both in terms of definability and in terms of computability.

Recursion theory is also linked to second order arithmetic, a formal theory of natural numbers and sets of natural numbers. The fact that certain sets are computable or relatively computable often implies that these sets can be defined in weak subsystems of second order arithmetic. The program of reverse mathematics uses these subsystems to measure the noncomputability inherent in well known mathematical theorems. Simpson (1999) discusses many aspects of second-order arithmetic and reverse mathematics.

The field of proof theory includes the study of second-order arithmetic and Peano arithmetic, as well as formal theories of the natural numbers weaker than Peano arithmetic. One method of classifying the strength of these weak systems is by characterizing which computable functions the system can prove to be total (see Fairtlough and Wainer (1998)). For example, in primitive recursive arithmetic any computable function that is provably total is actually primitive recursive, while Peano arithmetic proves that functions like the Ackerman function, which are not primitive recursive, are total. Not every total computable function is provably total in Peano arithmetic, however; an example of such a function is provided by Goodstein's theorem.

Read more about this topic:  Recursion Theory

Famous quotes containing the word proof:

    The source of Pyrrhonism comes from failing to distinguish between a demonstration, a proof and a probability. A demonstration supposes that the contradictory idea is impossible; a proof of fact is where all the reasons lead to belief, without there being any pretext for doubt; a probability is where the reasons for belief are stronger than those for doubting.
    Andrew Michael Ramsay (1686–1743)