In mathematics, a recurrence relation is an equation that recursively defines a sequence, once one or more initial terms are given: each further term of the sequence is defined as a function of the preceding terms.
The term difference equation sometimes (and for the purposes of this article) refers to a specific type of recurrence relation. However, "difference equation" is frequently used to refer to any recurrence relation.
An example of a recurrence relation is the logistic map:
with a given constant r; given the initial term x0 each subsequent term is determined by this relation.
Some simply defined recurrence relations can have very complex (chaotic) behaviours, and they are a part of the field of mathematics known as nonlinear analysis.
Solving a recurrence relation means obtaining a closed-form solution: a non-recursive function of n.
Read more about Recurrence Relation: Fibonacci Numbers, Relationship To Differential Equations
Famous quotes containing the words recurrence and/or relation:
“Forgetfulness is necessary to remembrance. Ideas are retained by renovation of that impression which time is always wearing away, and which new images are striving to obliterate. If useless thoughts could be expelled from the mind, all the valuable parts of our knowledge would more frequently recur, and every recurrence would reinstate them in their former place.”
—Samuel Johnson (17091784)
“We shall never resolve the enigma of the relation between the negative foundations of greatness and that greatness itself.”
—Jean Baudrillard (b. 1929)