Structure
The structures of receptors are very diverse and can broadly be classified into the following categories:
- peripheral membrane proteins
- transmembrane proteins
- G protein-coupled receptors – Composed of seven transmembrane alpha helices. The loops connecting the alpha helices form extracellular and intracellular domains. The binding site for larger peptidic ligands is usually located in the extracellular domain whereas the binding site for smaller non-peptidic ligands is often located between the seven alpha helices and one extracellular loop.
- ligand-gated ion channels – Have a heteropentameric structure. Each subunit of consist of the extracellular ligand-binding domain and a transmembrane domain where the transmembrane domain in turn includes four transmembrane alpha helixes. The ligand binding cavities are located at the interface between the subunits.
- receptor tyrosine kinase – Functional receptors are homodimers. Each monomer possesses a single transmembrane alpha helix and an extracellular domain containing the ligand binding cavity and an intracellular domain with catalytic activity.
- soluble globular proteins
- nuclear receptors – Composed of a C-terminal DNA-binding domain (DBD) and a N-terminal ligand-binding domain (LDB). The LBD is composed of twelve alpha helices and an antiparallel beta sheet. The ligand binding cavity is buried within the interior of the LBD.
Membrane receptors may be isolated from cell membranes by complex extraction procedures using solvents, detergents, and/or affinity purification.
The structures and actions of receptors may be studied by using biophysical methods such as X-ray crystallography, NMR, circular dichroism, and dual polarisation interferometry. Computer simulations of the dynamic behavior of receptors have been used to gain understanding of their mechanism of action.
Read more about this topic: Receptor (biochemistry)
Famous quotes containing the word structure:
“Just as a new scientific discovery manifests something that was already latent in the order of nature, and at the same time is logically related to the total structure of the existing science, so the new poem manifests something that was already latent in the order of words.”
—Northrop Frye (b. 1912)
“A committee is organic rather than mechanical in its nature: it is not a structure but a plant. It takes root and grows, it flowers, wilts, and dies, scattering the seed from which other committees will bloom in their turn.”
—C. Northcote Parkinson (19091993)
“There is no such thing as a language, not if a language is anything like what many philosophers and linguists have supposed. There is therefore no such thing to be learned, mastered, or born with. We must give up the idea of a clearly defined shared structure which language-users acquire and then apply to cases.”
—Donald Davidson (b. 1917)