Real Number - Real Numbers and Logic

Real Numbers and Logic

The real numbers are most often formalized using the Zermelo–Fraenkel axiomatization of set theory, but some mathematicians study the real numbers with other logical foundations of mathematics. In particular, the real numbers are also studied in reverse mathematics and in constructive mathematics.

Abraham Robinson's theory of nonstandard or hyperreal numbers extends the set of the real numbers by infinitesimal numbers, which allows building infinitesimal calculus in a way closer to the usual intuition of the notion of limit. Edward Nelson's internal set theory is a non-Zermelo–Fraenkel set theory that considers non-standard real numbers as elements of the set of the reals (and not of an extension of it, as in Robinson's theory).

The continuum hypothesis posits that the cardinality of the set of the real numbers is, i.e. the smallest infinite cardinal number after, the cardinality of the integers. Paul Cohen proved in 1963 that it is an axiom independent of the other axioms of set theory; that is, one may choose either the continuum hypothesis or its negation as an axiom of set theory, without contradiction.

Read more about this topic:  Real Number

Famous quotes containing the words real, numbers and/or logic:

    Only men of moral and mental force, of a patriotic regard for the relationship of the two races, can be of real service as ministers in the South. Less theology and more of human brotherhood, less declamation and more common sense and love for truth, must be the qualifications of the new ministry that shall yet save the race from the evils of false teaching.
    Fannie Barrier Williams (1855–1944)

    All experience teaches that, whenever there is a great national establishment, employing large numbers of officials, the public must be reconciled to support many incompetent men; for such is the favoritism and nepotism always prevailing in the purlieus of these establishments, that some incompetent persons are always admitted, to the exclusion of many of the worthy.
    Herman Melville (1819–1891)

    Histories make men wise; poets witty; the mathematics subtle; natural philosophy deep; moral grave; logic and rhetoric able to contend.
    Francis Bacon (1561–1626)