Real Number - Real Numbers and Logic

Real Numbers and Logic

The real numbers are most often formalized using the Zermelo–Fraenkel axiomatization of set theory, but some mathematicians study the real numbers with other logical foundations of mathematics. In particular, the real numbers are also studied in reverse mathematics and in constructive mathematics.

Abraham Robinson's theory of nonstandard or hyperreal numbers extends the set of the real numbers by infinitesimal numbers, which allows building infinitesimal calculus in a way closer to the usual intuition of the notion of limit. Edward Nelson's internal set theory is a non-Zermelo–Fraenkel set theory that considers non-standard real numbers as elements of the set of the reals (and not of an extension of it, as in Robinson's theory).

The continuum hypothesis posits that the cardinality of the set of the real numbers is, i.e. the smallest infinite cardinal number after, the cardinality of the integers. Paul Cohen proved in 1963 that it is an axiom independent of the other axioms of set theory; that is, one may choose either the continuum hypothesis or its negation as an axiom of set theory, without contradiction.

Read more about this topic:  Real Number

Famous quotes containing the words real, numbers and/or logic:

    The real grounds of difference upon important political questions no longer correspond with party lines.... Politics is no longer the topic of this country. Its important questions are settled... Great minds hereafter are to be employed on other matters.... Government no longer has its ancient importance.... The people’s progress, progress of every sort, no longer depends on government. But enough of politics. Henceforth I am out more than ever.
    Rutherford Birchard Hayes (1822–1893)

    Our religion vulgarly stands on numbers of believers. Whenever the appeal is made—no matter how indirectly—to numbers, proclamation is then and there made, that religion is not. He that finds God a sweet, enveloping presence, who shall dare to come in?
    Ralph Waldo Emerson (1803–1882)

    There is no morality by instinct.... There is no social salvation—in the end—without taking thought; without mastery of logic and application of logic to human experience.
    Katharine Fullerton Gerould (1879–1944)