RC Circuit - Parallel Circuit

Parallel Circuit

The parallel RC circuit is generally of less interest than the series circuit. This is largely because the output voltage is equal to the input voltage — as a result, this circuit does not act as a filter on the input signal unless fed by a current source.

With complex impedances:


I_R = \frac{V_{in}}{R}\,

and


I_C = j\omega C V_{in}\,
.

This shows that the capacitor current is 90° out of phase with the resistor (and source) current. Alternatively, the governing differential equations may be used:


I_R = \frac{V_{in}}{R}

and


I_C = C\frac{dV_{in}}{dt}
.

When fed by a current source, the transfer function of a parallel RC circuit is:


\frac{V_{out}}{I_{in}} = \frac{R}{1+sRC}
.

Read more about this topic:  RC Circuit

Famous quotes containing the words parallel and/or circuit:

    The universe expects every man to do his duty in his parallel of latitude.
    Henry David Thoreau (1817–1862)

    each new victim treads unfalteringly
    The never altered circuit of his fate,
    Bringing twelve peers as witness
    Both to his starry rise and starry fall.
    Robert Graves (1895–1985)