Table of Ray Transfer Matrices
for simple optical components
Element | Matrix | Remarks |
---|---|---|
Propagation in free space or in a medium of constant refractive index | d = distance |
|
Refraction at a flat interface | n1 = initial refractive index n2 = final refractive index. |
|
Refraction at a curved interface | R = radius of curvature, R > 0 for convex (centre of curvature after interface) n1 = initial refractive index |
|
Reflection from a flat mirror | ||
Reflection from a curved mirror | R = radius of curvature, R > 0 for concave | |
Thin lens | f = focal length of lens where f > 0 for convex/positive (converging) lens.
Only valid if the focal length is much greater than the thickness of the lens. |
|
Thick lens | n1 = refractive index outside of the lens. n2 = refractive index of the lens itself (inside the lens). |
|
Single right angle prism | k = (cos/cos) is the beam expansion factor, where is the angle of incidence, is the angle of refraction, d = prism path length, n = refractive index of the prism material. This matrix applies for orthogonal beam exit. |
Read more about this topic: Ray Transfer Matrix Analysis
Famous quotes containing the words table, ray and/or transfer:
“A man who can dominate a London dinner table can dominate the world. The future belongs to the dandy. It is the exquisites who are going to rule.”
—Oscar Wilde (18541900)
“Our reason may prove what it will: our reason is only a feeble ray that has issued from Nature.”
—Maurice Maeterlinck (18621949)
“If it had not been for storytelling, the black family would not have survived. It was the responsibility of the Uncle Remus types to transfer philosophies, attitudes, values, and advice, by way of storytelling using creatures in the woods as symbols.”
—Jackie Torrence (b. 1944)