Table of Ray Transfer Matrices
for simple optical components
Element | Matrix | Remarks |
---|---|---|
Propagation in free space or in a medium of constant refractive index | d = distance |
|
Refraction at a flat interface | n1 = initial refractive index n2 = final refractive index. |
|
Refraction at a curved interface | R = radius of curvature, R > 0 for convex (centre of curvature after interface) n1 = initial refractive index |
|
Reflection from a flat mirror | ||
Reflection from a curved mirror | R = radius of curvature, R > 0 for concave | |
Thin lens | f = focal length of lens where f > 0 for convex/positive (converging) lens.
Only valid if the focal length is much greater than the thickness of the lens. |
|
Thick lens | n1 = refractive index outside of the lens. n2 = refractive index of the lens itself (inside the lens). |
|
Single right angle prism | k = (cos/cos) is the beam expansion factor, where is the angle of incidence, is the angle of refraction, d = prism path length, n = refractive index of the prism material. This matrix applies for orthogonal beam exit. |
Read more about this topic: Ray Transfer Matrix Analysis
Famous quotes containing the words table, ray and/or transfer:
“They were not on the table with their elbows.
They were not sleeping in the shelves of bunks.
I saw no men there and no bones of men there.”
—Robert Frost (18741963)
“A small voice issued from a bed placed in utter darkness where no ray of light was admitted, complaining of bad nerves, low spirits, and terrible dreams.”
—Sarah Fielding (17101768)
“No sociologist ... should think himself too good, even in his old age, to make tens of thousands of quite trivial computations in his head and perhaps for months at a time. One cannot with impunity try to transfer this task entirely to mechanical assistants if one wishes to figure something, even though the final result is often small indeed.”
—Max Weber (18641920)