Ray Transfer Matrix Analysis - Table of Ray Transfer Matrices

Table of Ray Transfer Matrices

for simple optical components

Element Matrix Remarks
Propagation in free space or in a medium of constant refractive index d = distance
Refraction at a flat interface n1 = initial refractive index

n2 = final refractive index.

Refraction at a curved interface R = radius of curvature, R > 0 for convex (centre of curvature after interface)

n1 = initial refractive index
n2 = final refractive index.

Reflection from a flat mirror
Reflection from a curved mirror R = radius of curvature, R > 0 for concave
Thin lens f = focal length of lens where f > 0 for convex/positive (converging) lens.

Only valid if the focal length is much greater than the thickness of the lens.

Thick lens n1 = refractive index outside of the lens.

n2 = refractive index of the lens itself (inside the lens).
R1 = Radius of curvature of First surface.
R2 = Radius of curvature of Second surface.
t = thickness of lens (not taking into account thickness of curved parts. If total thickness is desired, total thickness would equal t + both curved thickness parts.

Single right angle prism k = (cos/cos) is the beam expansion factor, where is the angle of incidence, is the angle of refraction, d = prism path length, n = refractive index of the prism material. This matrix applies for orthogonal beam exit.

Read more about this topic:  Ray Transfer Matrix Analysis

Famous quotes containing the words table, ray and/or transfer:

    A man who can dominate a London dinner table can dominate the world. The future belongs to the dandy. It is the exquisites who are going to rule.
    Oscar Wilde (1854–1900)

    I paint what cannot be photographed, that which comes from the imagination or from dreams, or from an unconscious drive. I photograph the things that I do not wish to paint, the things which already have an existence.
    —Man Ray (1890–1976)

    I have proceeded ... to prevent the lapse from ... the point of blending between wakefulness and sleep.... Not ... that I can render the point more than a point—but that I can startle myself ... into wakefulness—and thus transfer the point ... into the realm of Memory—convey its impressions,... to a situation where ... I can survey them with the eye of analysis.
    Edgar Allan Poe (1809–1849)