In algebra, the rational root theorem (or rational root test) states a constraint on rational solutions (or roots) of the polynomial equation
with integer coefficients.
If a0 and an are nonzero, then each rational solution x, when written as a fraction x = p/q in lowest terms (i.e., the greatest common divisor of p and q is 1), satisfies
- p is an integer factor of the constant term a0, and
- q is an integer factor of the leading coefficient an.
Thus, a list of possible rational roots of the equation can be derived using the formula .
The rational root theorem is a special case (for a single linear factor) of Gauss's lemma on the factorization of polynomials. The integral root theorem is a special case of the rational root theorem if the leading coefficient an = 1.
Read more about Rational Root Theorem: Example
Famous quotes containing the words rational, root and/or theorem:
“I often wish for the end of the wretched remnant of my life; and that wish is a rational one; but then the innate principle of self-preservation, wisely implanted in our natures, for obvious purposes, opposes that wish, and makes us endeavour to spin out our thread as long as we can, however decayed and rotten it may be.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“Not marble nor the gilded monuments
Of princes shall outlive this powerful rime;
But you shall shine more bright in these contents
Than unswept stone, besmeared with sluttish time.
When wasteful war shall statues overturn,
And broils root out the work of masonry,
Nor Mars his sword nor wars quick fire shall burn
The living record of your memory.”
—William Shakespeare (15641616)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)