Rational Number - Real Numbers and Topological Properties

Real Numbers and Topological Properties

The rationals are a dense subset of the real numbers: every real number has rational numbers arbitrarily close to it. A related property is that rational numbers are the only numbers with finite expansions as regular continued fractions.

By virtue of their order, the rationals carry an order topology. The rational numbers, as a subspace of the real numbers, also carry a subspace topology. The rational numbers form a metric space by using the absolute difference metric d(x,y) = |xy|, and this yields a third topology on Q. All three topologies coincide and turn the rationals into a topological field. The rational numbers are an important example of a space which is not locally compact. The rationals are characterized topologically as the unique countable metrizable space without isolated points. The space is also totally disconnected. The rational numbers do not form a complete metric space; the real numbers are the completion of Q under the metric d(x,y) = |xy|, above.

Read more about this topic:  Rational Number

Famous quotes containing the words real, numbers and/or properties:

    Skill sheets, workbooks, basal reader, flash cards are not enough. To convey meaning you need someone sharing the meaning and flavor of real stories with the student.
    Jim Trelease (20th century)

    What culture lacks is the taste for anonymous, innumerable germination. Culture is smitten with counting and measuring; it feels out of place and uncomfortable with the innumerable; its efforts tend, on the contrary, to limit the numbers in all domains; it tries to count on its fingers.
    Jean Dubuffet (1901–1985)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)