Formal Construction
Mathematically we may construct the rational numbers as equivalence classes of ordered pairs of integers (m,n), with n ≠ 0. This space of equivalence classes is the quotient space (Z × (Z \ {0})) / ~, where (m1,n1) ~ (m2,n2) if, and only if, m1n2 − m2n1 = 0. We can define addition and multiplication of these pairs with the following rules:
and, if m2 ≠ 0, division by
The equivalence relation (m1,n1) ~ (m2,n2) if, and only if, m1n2 − m2n1 = 0 is a congruence relation, i.e. it is compatible with the addition and multiplication defined above, and we may define Q to be the quotient set (Z × (Z \ {0})) / ~, i.e. we identify two pairs (m1,n1) and (m2,n2) if they are equivalent in the above sense. (This construction can be carried out in any integral domain: see field of fractions.) We denote by the equivalence class containing (m1,n1). If (m1,n1) ~ (m2,n2) then, by definition, (m1,n1) belongs to and (m2,n2) belongs to ; in this case we can write = . Given any equivalence class there are a countably infinite number of representation, since
The canonical choice for is chosen so that gcd(m,n) = 1, i.e. m and n share no common factors, i.e. m and n are coprime. For example, we would write instead of or, even though = = .
We can also define a total order on Q. Let ∧ be the and-symbol and ∨ be the or-symbol. We say that ≤ if:
The integers may be considered to be rational numbers by the embedding that maps m to .
Read more about this topic: Rational Number
Famous quotes containing the words formal and/or construction:
“This is no argument against teaching manners to the young. On the contrary, it is a fine old tradition that ought to be resurrected from its current mothballs and put to work...In fact, children are much more comfortable when they know the guide rules for handling the social amenities. Its no more fun for a child to be introduced to a strange adult and have no idea what to say or do than it is for a grownup to go to a formal dinner and have no idea what fork to use.”
—Leontine Young (20th century)
“There is, I think, no point in the philosophy of progressive education which is sounder than its emphasis upon the importance of the participation of the learner in the formation of the purposes which direct his activities in the learning process, just as there is no defect in traditional education greater than its failure to secure the active cooperation of the pupil in construction of the purposes involved in his studying.”
—John Dewey (18591952)