Ratio Test - Proof

Proof

Below is a proof of the validity of the original ratio test.

Suppose that . We can then show that the series converges absolutely by showing that its terms will eventually become less than those of a certain convergent geometric series. To do this, let . Then r is strictly between L and 1, and for sufficiently large n (say, n greater than N). Hence for each n > N and i > 0, and so

\sum_{i=N+1}^{\infty}|a_{i}| = \sum_{i=1}^{\infty}|a_{N+i}|
< \sum_{i=1}^{\infty}r^{i}|a_{N+1}| = |a_{N+1}|\sum_{i=1}^{\infty}r^{i}
= |a_{N+1}|\frac{r}{1 - r} < \infty.

That is, the series converges absolutely.

On the other hand, if L > 1, then for sufficiently large n, so that the limit of the summands is non-zero. Hence the series diverges.

Read more about this topic:  Ratio Test

Famous quotes containing the word proof:

    In the reproof of chance
    Lies the true proof of men.
    William Shakespeare (1564–1616)

    O, popular applause! what heart of man
    Is proof against thy sweet, seducing charms?
    William Cowper (1731–1800)

    When children feel good about themselves, it’s like a snowball rolling downhill. They are continually able to recognize and integrate new proof of their value as they grow and mature.
    Stephanie Martson (20th century)