Description
The Rankine cycle most closely describes the process by which steam-operated heat engines most commonly found in power generation plants generate power. The two most common heating processes used in these power plants are nuclear fission and the combustion of fossil fuels such as coal, natural gas, and oil.
The Rankine cycle is sometimes referred to as a practical Carnot cycle because, when an efficient turbine is used, the TS diagram begins to resemble the Carnot cycle. The main difference is that heat addition (in the boiler) and rejection (in the condenser) are isobaric in the Rankine cycle and isothermal in the theoretical Carnot cycle. A pump is used to pressurize the working fluid received from the condenser as a liquid instead of as a gas. All of the energy in pumping the working fluid through the complete cycle is lost, as is most of the energy of vaporization of the working fluid in the boiler. The vaporization energy is rejected from the cycle through the condenser. But pumping the working fluid through the cycle as a liquid requires a very small fraction of the energy needed to transport it as compared to compressing the working fluid as a gas in a compressor (as in the Carnot cycle).
The efficiency of a Rankine cycle is usually limited by the working fluid. Without the pressure reaching super critical levels for the working fluid, the temperature range the cycle can operate over is quite small: turbine entry temperatures are typically 565°C (the creep limit of stainless steel) and condenser temperatures are around 30°C. This gives a theoretical Carnot efficiency of about 63% compared with an actual efficiency of 42% for a modern coal-fired power station. This low turbine entry temperature (compared with a gas turbine) is why the Rankine cycle is often used as a bottoming cycle in combined-cycle gas turbine power stations.
The working fluid in a Rankine cycle follows a closed loop and is reused constantly. The water vapor with entrained droplets often seen billowing from power stations is generated by the cooling systems (not from the closed-loop Rankine power cycle) and represents the waste heat energy (pumping and condensing) that could not be converted to useful work in the turbine. Note that cooling towers operate using the latent heat of vaporization of the cooling fluid. While many substances could be used in the Rankine cycle, water is usually the fluid of choice due to its favorable properties, such as nontoxic and nonreactive chemistry, abundance, and low cost, as well as its thermodynamic properties.
One of the principal advantages the Rankine cycle holds over others is that during the compression stage relatively little work is required to drive the pump, the working fluid being in its liquid phase at this point. By condensing the fluid, the work required by the pump consumes only 1% to 3% of the turbine power and contributes to a much higher efficiency for a real cycle. The benefit of this is lost somewhat due to the lower heat addition temperature. Gas turbines, for instance, have turbine entry temperatures approaching 1500°C. Nonetheless, the efficiencies of actual large steam cycles and large modern gas turbines are fairly well matched.
Read more about this topic: Rankine Cycle
Famous quotes containing the word description:
“Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.”
—Willard Van Orman Quine (b. 1908)
“A sound mind in a sound body, is a short, but full description of a happy state in this World: he that has these two, has little more to wish for; and he that wants either of them, will be little the better for anything else.”
—John Locke (16321704)
“He hath achieved a maid
That paragons description and wild fame;
One that excels the quirks of blazoning pens.”
—William Shakespeare (15641616)