Definition
A random function is a type of random element in which a single outcome is selected from some family of functions, where the family consists some class of all maps from the domain to the codomain. For example the class may be restricted to all continuous functions or to all step function. The values determined by a random function evaluated at different points from the same realization would not generally be statistically independent but, depending on the model, values deterimined at the same or different points from different realisations might well be treated as independent.
Read more about this topic: Random Function
Famous quotes containing the word definition:
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)