Features and Advantages
The advantages of random forest are:
- It is one of the most accurate learning algorithms available. For many data sets, it produces a highly accurate classifier.
- It runs efficiently on large databases.
- It can handle thousands of input variables without variable deletion.
- It gives estimates of what variables are important in the classification.
- It generates an internal unbiased estimate of the generalization error as the forest building progresses.
- It has an effective method for estimating missing data and maintains accuracy when a large proportion of the data are missing.
- It has methods for balancing error in class population unbalanced data sets.
- Prototypes are computed that give information about the relation between the variables and the classification.
- It computes proximities between pairs of cases that can be used in clustering, locating outliers, or (by scaling) give interesting views of the data.
- The capabilities of the above can be extended to unlabeled data, leading to unsupervised clustering, data views and outlier detection.
- It offers an experimental method for detecting variable interactions.
Read more about this topic: Random Forest
Famous quotes containing the words features and/or advantages:
“The features of our face are hardly more than gestures which force of habit made permanent. Nature, like the destruction of Pompeii, like the metamorphosis of a nymph into a tree, has arrested us in an accustomed movement.”
—Marcel Proust (18711922)
“The respect for human rights is one of the most significant advantages of a free and democratic nation in the peaceful struggle for influence, and we should use this good weapon as effectively as possible.”
—Jimmy Carter (James Earl Carter, Jr.)