Definition and Examples
Given a probability space, an X-valued random field is a collection of X-valued random variables indexed by elements in a topological space T. That is, a random field F is a collection
where each is an X-valued random variable.
Several kinds of random fields exist, among them the Markov random field (MRF), Gibbs random field (GRF), conditional random field (CRF), and Gaussian random field. An MRF exhibits the Markovian property
where is a set of neighbours of the random variable Xi. In other words, the probability that a random variable assumes a value depends on the other random variables only through the ones that are its immediate neighbours. The probability of a random variable in an MRF is given by
where Ω' is the same realization of Ω, except for random variable Xi. It is difficult to calculate with this equation, without recourse to the relation between MRFs and GRFs proposed by Julian Besag in 1974.
Read more about this topic: Random Field
Famous quotes containing the words definition and/or examples:
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)