Ramsey's Theorem - Infinite Version Implies The Finite

Infinite Version Implies The Finite

It is possible to deduce the finite Ramsey theorem from the infinite version by a proof by contradiction. Suppose the finite Ramsey theorem is false. Then there exist integers such that for every integer, there exists a -colouring of without a monochromatic set of size . Let denote the -colourings of without a monochromatic set of size .

For any k, the restriction of a colouring in to (by ignoring the colour of all sets containing ) is a colouring in . Define to be the colourings in which are restrictions of colourings in . Since is not empty, neither is .

Similarly, the restriction of any colouring in is in, allowing one to define as the set of all such restrictions, a non-empty set. Continuing so, define for all integers .

Now, for any integer, and each set is non-empty. Furthermore, is finite as . It follows that the intersection of all of these sets is non-empty, and let . Then every colouring in is the restriction of a colouring in . Therefore, by unrestricting a colouring in to a colouring in, and continuing doing so, one constructs a colouring of without any monochromatic set of size . This contradicts the infinite Ramsey theorem.

If a suitable topological viewpoint is taken, this argument becomes a standard compactness argument showing that the infinite version of the theorem implies the finite version.

Read more about this topic:  Ramsey's Theorem

Famous quotes containing the words infinite, version, implies and/or finite:

    [The human mind] finds more facility in assenting to the self-existence of an invisible cause possessing infinite power, wisdom, and goodness, than in the self-existence of the universe, visibly destitute of these attributes, and which may be the effect of them.
    James Madison (1751–1836)

    Remember that you were a slave in the land of Egypt, and the LORD your God brought you out from there with a mighty hand and an outstretched arm; therefore the LORD your God commanded you to keep the sabbath day.
    Bible: Hebrew, Deuteronomy 5:15.

    See Exodus 22:8 for a different version of this fourth commandment.

    An artist is an artist only because of his exquisite sense of beauty, a sense which shows him intoxicating pleasures, but which at the same time implies and contains an equally exquisite sense of all deformities and all disproportions.
    Charles Baudelaire (1821–1867)

    For it is only the finite that has wrought and suffered; the infinite lies stretched in smiling repose.
    Ralph Waldo Emerson (1803–1882)