Directed Graph Ramsey Numbers
It is also possible to define Ramsey numbers for directed graphs. (These were introduced by P. Erdős & L. Moser.) Let R(n) be the smallest number Q such that any complete graph with singly directed arcs (also called a "tournament") and with ≥ Q nodes contains an acyclic (also called "transitive") n-node subtournament.
This is the directed-graph analogue of what (above) has been called R(n,n;2), the smallest number Z such that any 2-colouring of the edges of a complete undirected graph with ≥ Z nodes, contains a monochromatic complete graph on n nodes. (The directed analogue of the two possible arc colours is the two directions of the arcs, the analogue of "monochromatic" is "all arc-arrows point the same way," i.e. "acyclic.")
Indeed many find the directed graph problem to actually be more elegant than the unidirected one. We have R(0)=0, R(1)=1, R(2)=2, R(3)=4, R(4)=8, R(5)=14, R(6)=28, 32≤R(7)≤55, and R(8) is again a problem you do not want powerful aliens to pose.
Read more about this topic: Ramsey's Theorem
Famous quotes containing the words directed, graph and/or numbers:
“Whether in the field of health, education or welfare, I have put my emphasis on preventive rather than curative programs and tried to influence our elaborate, costly and ill- co-ordinated welfare organizations in that direction. Unfortunately the momentum of social work is still directed toward compensating the victims of our society for its injustices rather than eliminating those injustices.”
—Agnes E. Meyer (18871970)
“When producers want to know what the public wants, they graph it as curves. When they want to tell the public what to get, they say it in curves.”
—Marshall McLuhan (19111980)
“And when all bodies meet
In Lethe to be drowned,
Then only numbers sweet
With endless life are crowned.”
—Robert Herrick (15911674)