Directed Graph Ramsey Numbers
It is also possible to define Ramsey numbers for directed graphs. (These were introduced by P. Erdős & L. Moser.) Let R(n) be the smallest number Q such that any complete graph with singly directed arcs (also called a "tournament") and with ≥ Q nodes contains an acyclic (also called "transitive") n-node subtournament.
This is the directed-graph analogue of what (above) has been called R(n,n;2), the smallest number Z such that any 2-colouring of the edges of a complete undirected graph with ≥ Z nodes, contains a monochromatic complete graph on n nodes. (The directed analogue of the two possible arc colours is the two directions of the arcs, the analogue of "monochromatic" is "all arc-arrows point the same way," i.e. "acyclic.")
Indeed many find the directed graph problem to actually be more elegant than the unidirected one. We have R(0)=0, R(1)=1, R(2)=2, R(3)=4, R(4)=8, R(5)=14, R(6)=28, 32≤R(7)≤55, and R(8) is again a problem you do not want powerful aliens to pose.
Read more about this topic: Ramsey's Theorem
Famous quotes containing the words directed, graph and/or numbers:
“It does not follow, because our difficulties are stupendous, because there are some souls timorous enough to doubt the validity and effectiveness of our ideals and our system, that we must turn to a state controlled or state directed social or economic system in order to cure our troubles.”
—Herbert Hoover (18741964)
“In this Journal, my pen is a delicate needle point, tracing out a graph of temperament so as to show its daily fluctuations: grave and gay, up and down, lamentation and revelry, self-love and self-disgust. You get here all my thoughts and opinions, always irresponsible and often contradictory or mutually exclusive, all my moods and vapours, all the varying reactions to environment of this jelly which is I.”
—W.N.P. Barbellion (18891919)
“The forward Youth that would appear
Must now forsake his Muses dear,
Nor in the Shadows sing
His Numbers languishing.”
—Andrew Marvell (16211678)