A Multicolour Example: R(3,3,3) = 17
A multicolour Ramsey number is a Ramsey number using 3 or more colours. There is only one nontrivial multicolour Ramsey number for which the exact value is known, namely R(3,3,3) = 17.
Suppose that you have an edge colouring of a complete graph using 3 colours, red, yellow and green. Suppose further that the edge colouring has no monochromatic triangles. Select a vertex v. Consider the set of vertices which have a green edge to the vertex v. This is called the green neighborhood of v. The green neighborhood of v cannot contain any green edges, since otherwise there would be a green triangle consisting of the two endpoints of that green edge and the vertex v. Thus, the induced edge colouring on the green neighborhood of v has edges coloured with only two colours, namely yellow and red. Since R(3,3) = 6, the green neighborhood of v can contain at most 5 vertices. Similarly, the red and yellow neighborhoods of v can contain at most 5 vertices each. Since every vertex, except for v itself, is in one of the green, red or yellow neighborhoods of v, the entire complete graph can have at most 1 + 5 + 5 + 5 = 16 vertices. Thus, we have R(3,3,3) ≤ 17.
To see that R(3,3,3) ≥ 17, it suffices to draw an edge colouring on the complete graph on 16 vertices with 3 colours, which avoids monochromatic triangles. It turns out that there are exactly two such colourings on K16, the so-called untwisted and twisted colourings. Both colourings are shown in the figure to the right, with the untwisted colouring on the top, and the twisted colouring on the bottom. In both colourings in the figure, note that the vertices are labeled, and that the vertices v11 through v15 are drawn twice, on both the left and the right, in order to simplify the drawings.
Thus, R(3,3,3) = 17.
If you select any colour of either the untwisted or twisted colouring on K16, and consider the graph whose edges are precisely those edges which have the specified colour, you will get the Clebsch graph.
It is known that there are exactly two edge colourings with 3 colours on K15 which avoid monochromatic triangles, which can be constructed by deleting any vertex from the untwisted and twisted colourings on K16, respectively.
It is also known that there are exactly 115 edge colourings with 3 colours on K14 which avoid monochromatic triangles, provided that we consider edge colourings which differ by a permutation of the colours as being the same.
Read more about this topic: Ramsey's Theorem