Radius of Gyration - Applications in Structural Engineering

Applications in Structural Engineering

In structural engineering, the two-dimensional radius of gyration is used to describe the distribution of cross sectional area in a column around its centroidal axis. The radius of gyration is given by the following formula

or

where I is the second moment of area and A is the total cross-sectional area. The gyration radius is useful in estimating the stiffness of a column. However, if the principal moments of the two-dimensional gyration tensor are not equal, the column will tend to buckle around the axis with the smaller principal moment. For example, a column with an elliptical cross-section will tend to buckle in the direction of the smaller semiaxis.

It also can be referred to as the radial distance from a given axis at which the mass of a body could be concentrated without altering the rotational inertia of the body about that axis.

In engineering, where people deal with continuous bodies of matter, the radius of gyration is usually calculated as an integral.

Read more about this topic:  Radius Of Gyration

Famous quotes containing the words structural and/or engineering:

    The reader uses his eyes as well as or instead of his ears and is in every way encouraged to take a more abstract view of the language he sees. The written or printed sentence lends itself to structural analysis as the spoken does not because the reader’s eye can play back and forth over the words, giving him time to divide the sentence into visually appreciated parts and to reflect on the grammatical function.
    J. David Bolter (b. 1951)

    Mining today is an affair of mathematics, of finance, of the latest in engineering skill. Cautious men behind polished desks in San Francisco figure out in advance the amount of metal to a cubic yard, the number of yards washed a day, the cost of each operation. They have no need of grubstakes.
    Merle Colby, U.S. public relief program (1935-1943)