Radius of Convergence - Radius of Convergence in Complex Analysis

Radius of Convergence in Complex Analysis

A power series with a positive radius of convergence can be made into a holomorphic function by taking its argument to be a complex variable. The radius of convergence can be characterized by the following theorem:

The radius of convergence of a power series f centered on a point a is equal to the distance from a to the nearest point where f cannot be defined in a way that makes it holomorphic.

The set of all points whose distance to a is strictly less than the radius of convergence is called the disk of convergence.

The nearest point means the nearest point in the complex plane, not necessarily on the real line, even if the center and all coefficients are real. For example, the function

has no singularities on the real line, since has no real roots. Its Taylor series about 0 is given by

The root test shows that its radius of convergence is 1. In accordance with this, the function ƒ(z) has singularities at ±i, which are at a distance 1 from 0.

For a proof of this theorem, see analyticity of holomorphic functions.

Read more about this topic:  Radius Of Convergence

Famous quotes containing the words complex and/or analysis:

    It would be naive to think that peace and justice can be achieved easily. No set of rules or study of history will automatically resolve the problems.... However, with faith and perseverance,... complex problems in the past have been resolved in our search for justice and peace. They can be resolved in the future, provided, of course, that we can think of five new ways to measure the height of a tall building by using a barometer.
    Jimmy Carter (James Earl Carter, Jr.)

    Ask anyone committed to Marxist analysis how many angels on the head of a pin, and you will be asked in return to never mind the angels, tell me who controls the production of pins.
    Joan Didion (b. 1934)