Definition
For a power series ƒ defined as:
where
- a is a complex constant, the center of the disk of convergence,
- cn is the nth complex coefficient, and
- z is a complex variable.
The radius of convergence r is a nonnegative real number or ∞ such that the series converges if
and diverges if
In other words, the series converges if z is close enough to the center and diverges if it is too far away. The radius of convergence specifies how close is close enough. On the boundary, that is, where |z − a| = r, the behavior of the power series may be complicated, and the series may converge for some values of z and diverge for others. The radius of convergence is infinite if the series converges for all complex numbers z.
Read more about this topic: Radius Of Convergence
Famous quotes containing the word definition:
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)