Radio Interferometry
One of the most notable developments came in 1946 with the introduction of the technique called astronomical interferometry. Astronomical radio interferometers usually consist either of arrays of parabolic dishes (e.g., the One-Mile Telescope), arrays of one-dimensional antennas (e.g., the Molonglo Observatory Synthesis Telescope) or two-dimensional arrays of omni-directional dipoles (e.g., Tony Hewish's Pulsar Array). All of the telescopes in the array are widely separated and are usually connected using coaxial cable, waveguide, optical fiber, or other type of transmission line. Recent advances in the stability of electronic oscillators also now permit interferometry to be carried out by independent recording of the signals at the various antennas, and then later correlating the recordings at some central processing facility. This process is known as Very Long Baseline Interferometry (VLBI). Interferometry does increase the total signal collected, but its primary purpose is to vastly increase the resolution through a process called Aperture synthesis. This technique works by superposing (interfering) the signal waves from the different telescopes on the principle that waves that coincide with the same phase will add to each other while two waves that have opposite phases will cancel each other out. This creates a combined telescope that is equivalent in resolution (though not in sensitivity) to a single antenna whose diameter is equal to the spacing of the antennas furthest apart in the array.
A high quality image requires a large number of different separations between telescopes. Projected separation between any two telescopes, as seen from the radio source, is called a baseline. For example, the Very Large Array (VLA) near Socorro, New Mexico has 27 telescopes with 351 independent baselines at once, which achieves a resolution of 0.2 arc seconds at 3 cm wavelengths. Martin Ryle's group in Cambridge obtained a Nobel Prize for interferometry and aperture synthesis. The Lloyd's mirror interferometer was also developed independently in 1946 by Joseph Pawsey's group at the University of Sydney. In the early 1950s the Cambridge Interferometer mapped the radio sky to produce the famous 2C and 3C surveys of radio sources. A large physically connected radio telescope array is the Giant Metrewave Radio Telescope, located in Pune, India. The largest array, LOFAR (the 'LOw Frequency ARray'), is currently being constructed in western Europe, consisting of about 20 000 small antennas in 48 stations distributed over an area several hundreds of kilometres in diameter, and operates between 1.25 and 30 m wavelengths. VLBI systems using post-observation processing have been constructed with antennas thousands of miles apart. Radio interferometers have also been used to obtain detailed images of the anisotropies and the polarization of the Cosmic Microwave Background, like the CBI interferometer in 2004.
The world's largest physically connected telescopes, the SKA (Square Kilometre Array), is planned to start operation in 2020.
Read more about this topic: Radio Telescope
Famous quotes containing the word radio:
“from above, thin squeaks of radio static,
The captured fume of space foams in our ears”
—Hart Crane (18991932)