Radio Galaxy - Radio Structures

Radio Structures

Radio galaxies, and to a lesser extent, radio-loud quasars display a wide range of structures in radio maps. The most common large-scale structures are called lobes: these are double, often fairly symmetrical, roughly ellipsoidal structures placed on either side of the active nucleus. A significant minority of low-luminosity sources exhibit structures usually known as plumes which are much more elongated. Some radio galaxies show one or two long narrow features known as jets (the most famous example being the giant galaxy M87 in the Virgo cluster) coming directly from the nucleus and going to the lobes. Since the 1970s, the most widely accepted model has been that the lobes or plumes are powered by beams of high-energy particles and magnetic field coming from close to the active nucleus. The jets are believed to be the visible manifestations of the beams, and often the term jet is used to refer both to the observable feature and to the underlying flow.

In 1974, radio sources were divided by Fanaroff and Riley into two classes, now known as Fanaroff and Riley Class I (FRI), and Class II (FRII). The distinction was originally made based on the morphology of the large-scale radio emission (the type was determined by the distance between the brightest points in the radio emission): FRI sources were brightest towards the centre, while FRII sources were brightest at the edges. Fanaroff and Riley observed that there was a reasonably sharp divide in luminosity between the two classes: FRIs were low-luminosity, FRIIs were high luminosity. With more detailed radio observations, the morphology turns out to reflect the method of energy transport in the radio source. FRI objects typically have bright jets in the centre, while FRIIs have faint jets but bright hotspots at the ends of the lobes. FRIIs appear to be able to transport energy efficiently to the ends of the lobes, while FRI beams are inefficient in the sense that they radiate a significant amount of their energy away as they travel.

In more detail, the FRI/FRII division depends on host-galaxy environment in the sense that the FRI/FRII transition appears at higher luminosities in more massive galaxies. FRI jets are known to be decelerating in the regions in which their radio emission is brightest, and so it seems that the FRI/FRII transition reflects whether a jet/beam can propagate through the host galaxy without being decelerated to sub-relativistic speeds by interaction with the intergalactic medium. From analysis of relativistic beaming effects, the jets of FRII sources are known to remain relativistic (with speeds of at least 0.5c) out to the ends of the lobes. The hotspots that are usually seen in FRII sources are interpreted as being the visible manifestations of shocks formed when the fast, and therefore supersonic, jet (the speed of sound cannot exceed c/√3) abruptly terminates at the end of the source, and their spectral energy distributions are consistent with this picture. Often multiple hotspots are seen, reflecting either continued outflow after the shock or movement of the jet termination point: the overall hotspot region is sometimes called the hotspot complex.

Names are given to several particular types of radio source based on their radio structure:

  • Classical double refers to an FRII source with clear hotspots.
  • Wide-angle tail normally refers to a source intermediate between standard FRI and FRII structure, with efficient jets and sometimes hotspots, but with plumes rather than lobes, found at or near the centres of clusters.
  • Narrow-angle tail or Head-tail source describes an FRI that appears to be bent by ram pressure as it moves through a cluster.
  • Fat doubles are sources with diffuse lobes but neither jets nor hotspots. Some such sources may be relics whose energy supply has been permanently or temporarily turned off.

Read more about this topic:  Radio Galaxy

Famous quotes containing the words radio and/or structures:

    Now they can do the radio in so many languages that nobody any longer dreams of a single language, and there should not any longer be dreams of conquest because the globe is all one, anybody can hear everything and everybody can hear the same thing, so what is the use of conquering.
    Gertrude Stein (1874–1946)

    It is clear that all verbal structures with meaning are verbal imitations of that elusive psychological and physiological process known as thought, a process stumbling through emotional entanglements, sudden irrational convictions, involuntary gleams of insight, rationalized prejudices, and blocks of panic and inertia, finally to reach a completely incommunicable intuition.
    Northrop Frye (b. 1912)