Radiation Laboratory - Formation

Formation

During the mid- and late-1930s, radio systems for the detection and location of distant targets had been developed under great secrecy in the United States and Great Britain, as well as in several other nations, notably Germany, the USSR, and Japan. These usually operated at Very High Frequency (VHF) wavelengths in the electromagnetic spectrum and carried several cover names, such as Ranging and Direction Finding (RDF) in Great Britain. In 1941, the U. S. Navy coined the acronym RADAR (RAdio Detection And Ranging) for such systems; this soon led to the name radar and spread to other countries.

The potential advantages of operating such systems in the Ultra High Frequency (UHF or microwave) region were well known and vigorously pursued. One of these advantages was smaller antennas, a critical need for detection systems on aircraft. The primary technical barrier to developing UHF systems was the lack of a usable source for generating high-power microwaves. In February 1940, researchers John Randall and Harry Boot at Birmingham University in Great Britain built a resonant cavity magnetron to fill this need; it quickly was placed in the highest level of secrecy.

Shortly after this breakthrough, Britain's Prime Minister Winston Churchill and President Roosevelt agreed that the two nations would pool their technical secrets and jointly develop many urgently needed warfare technologies. At the initiation of this exchange in the late summer of 1940, the Tizard Mission brought to America one of the first of the new magnetrons. On October 6, Edward George Bowen, a key developer of RDF at the Telecommunications Research Establishment (TRE) and a member of the mission, demonstrated this magnetron, producing some 15,000 watts (15 kW) of power at 10-cm wavelength. (Microwave components usually are designated in wavelength, rather than frequency.)

American researchers and officials were amazed at the magnetron, and the NDRC immediately started plans for manufacturing and incorporating these devices. Alfred Lee Loomis, who headed the NDRC Microwave Committee, led in establishing the Radiation Laboratory at MIT as a joint Anglo-American effort for microwave research and developing systems using the new magnetron.

The name Radiation Laboratory, selected by Loomis when he selected the building for it on the MIT campus, intentionally was deceptive, albeit obliquely correct in that radar uses radiation in a portion of the electromagnetic spectrum. It was chosen to imply that the laboratory's mission was similar to that of the Ernest O. Lawrence's Radiation Laboratory at UC Berkeley; i.e., that it employed scientists to work on nuclear physics research. At the time, nuclear physics was regarded as relatively theoretical and inapplicable to military equipment, as this was before atomic bomb development had begun.

Ernest Lawrence was an active participant in forming the Rad Lab and personally recruited many key members of the initial staff. Most of the senior staff were Ph.D. physicists who came from university positions. They usually had no more than an academic knowledge of microwaves, and almost no background involving electronic hardware development. Their capability, however, to attack complex problems of almost any type was outstanding. Later in life, nine members of the staff were recipients of the Nobel Prize for their other accomplishments.

In June 1941, the NDRC became part of the new Office of Scientific Research and Development (OSRD), also administered by Vannevar Bush, who reported directly to President Roosevelt. The OSRD was given almost unlimited access to funding and resources, with the Rad Lab receiving a large share for radar research and development.

Starting in 1942, the Manhattan Project absorbed a number of the Rad Lab physicists into Los Alamos and Lawrence's facility at Berkeley. This was made simpler by Lawrence and Loomis being involved in all of these projects.

Read more about this topic:  Radiation Laboratory

Famous quotes containing the word formation:

    That for which Paul lived and died so gloriously; that for which Jesus gave himself to be crucified; the end that animated the thousand martyrs and heroes who have followed his steps, was to redeem us from a formal religion, and teach us to seek our well-being in the formation of the soul.
    Ralph Waldo Emerson (1803–1882)

    I want you to consider this distinction as you go forward in life. Being male is not enough; being a man is a right to be earned and an honor to be cherished. I cannot tell you how to earn that right or deserve that honor. . . but I can tell you that the formation of your manhood must be a conscious act governed by the highest vision of the man you want to be.
    Kent Nerburn (20th century)

    The moral virtues, then, are produced in us neither by nature nor against nature. Nature, indeed, prepares in us the ground for their reception, but their complete formation is the product of habit.
    Aristotle (384–322 B.C.)