Quotient of A Banach Space By A Subspace
If X is a Banach space and M is a closed subspace of X, then the quotient X/M is again a Banach space. The quotient space is already endowed with a vector space structure by the construction of the previous section. We define a norm on X/M by
The quotient space X/M is complete with respect to the norm, so it is a Banach space.
Read more about this topic: Quotient Space (linear Algebra)
Famous quotes containing the word space:
“The flattering, if arbitrary, label, First Lady of the Theatre, takes its toll. The demands are great, not only in energy but eventually in dramatic focus. It is difficult, if not impossible, for a star to occupy an inch of space without bursting seams, cramping everyone elses style and unbalancing a play. No matter how self-effacing a famous player may be, he makes an entrance as a casual neighbor and the audience interest shifts to the house next door.”
—Helen Hayes (19001993)