Quotient Space (linear Algebra) - Definition

Definition

Formally, the construction is as follows (Halmos 1974, §21-22). Let V be a vector space over a field K, and let N be a subspace of V. We define an equivalence relation ~ on V by stating that x ~ y if xyN. That is, x is related to y if one can be obtained from the other by adding an element of N. From this definition, one can deduce that any element of N is related to the zero vector; in other words all the vectors in N get mapped into the equivalence class of the zero vector.

The equivalence class of x is often denoted

= x + N

since it is given by

= {x + n : nN}.

The quotient space V/N is then defined as V/~, the set of all equivalence classes over V by ~. Scalar multiplication and addition are defined on the equivalence classes by

  • α = for all α ∈ K, and
  • + = .

It is not hard to check that these operations are well-defined (i.e. do not depend on the choice of representative). These operations turn the quotient space V/N into a vector space over K with N being the zero class, .

The mapping that associates to vV the equivalence class is known as the quotient map.

Read more about this topic:  Quotient Space (linear Algebra)

Famous quotes containing the word definition:

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)