Definition
Formally, the construction is as follows (Halmos 1974, §21-22). Let V be a vector space over a field K, and let N be a subspace of V. We define an equivalence relation ~ on V by stating that x ~ y if x − y ∈ N. That is, x is related to y if one can be obtained from the other by adding an element of N. From this definition, one can deduce that any element of N is related to the zero vector; in other words all the vectors in N get mapped into the equivalence class of the zero vector.
The equivalence class of x is often denoted
- = x + N
since it is given by
- = {x + n : n ∈ N}.
The quotient space V/N is then defined as V/~, the set of all equivalence classes over V by ~. Scalar multiplication and addition are defined on the equivalence classes by
- α = for all α ∈ K, and
- + = .
It is not hard to check that these operations are well-defined (i.e. do not depend on the choice of representative). These operations turn the quotient space V/N into a vector space over K with N being the zero class, .
The mapping that associates to v ∈ V the equivalence class is known as the quotient map.
Read more about this topic: Quotient Space (linear Algebra)
Famous quotes containing the word definition:
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)