Quotient Space (linear Algebra) - Definition

Definition

Formally, the construction is as follows (Halmos 1974, §21-22). Let V be a vector space over a field K, and let N be a subspace of V. We define an equivalence relation ~ on V by stating that x ~ y if xyN. That is, x is related to y if one can be obtained from the other by adding an element of N. From this definition, one can deduce that any element of N is related to the zero vector; in other words all the vectors in N get mapped into the equivalence class of the zero vector.

The equivalence class of x is often denoted

= x + N

since it is given by

= {x + n : nN}.

The quotient space V/N is then defined as V/~, the set of all equivalence classes over V by ~. Scalar multiplication and addition are defined on the equivalence classes by

  • α = for all α ∈ K, and
  • + = .

It is not hard to check that these operations are well-defined (i.e. do not depend on the choice of representative). These operations turn the quotient space V/N into a vector space over K with N being the zero class, .

The mapping that associates to vV the equivalence class is known as the quotient map.

Read more about this topic:  Quotient Space (linear Algebra)

Famous quotes containing the word definition:

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)