Definition
Let (X,τX) be a topological space, and let ~ be an equivalence relation on X. The quotient space, is defined to be the set of equivalence classes of elements of X:
equipped with the topology where the open sets are defined to be those sets of equivalence classes whose unions are open sets in X:
Equivalently, we can define them to be those sets with an open preimage under the quotient map which sends a point in X to the equivalence class containing it.
The quotient topology is the final topology on the quotient space with respect to the quotient map.
Read more about this topic: Quotient Space
Famous quotes containing the word definition:
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)