Compatibility With Other Topological Notions
- Separation
- In general, quotient spaces are ill-behaved with respect to separation axioms. The separation properties of X need not be inherited by X/~, and X/~ may have separation properties not shared by X.
- X/~ is a T1 space if and only if every equivalence class of ~ is closed in X.
- If the quotient map is open, then X/~ is a Hausdorff space if and only if ~ is a closed subset of the product space X×X.
- Connectedness
- If a space is connected or path connected, then so are all its quotient spaces.
- A quotient space of a simply connected or contractible space need not share those properties.
- Compactness
- If a space is compact, then so are all its quotient spaces.
- A quotient space of a locally compact space need not be locally compact.
- Dimension
- The topological dimension of a quotient space can be more (as well as less) than the dimension of the original space; space-filling curves provide such examples.
Read more about this topic: Quotient Space
Famous quotes containing the word notions:
“What is termed Sin is an essential element of progress. Without it the world would stagnate, or grow old, or become colourless. By its curiosity Sin increases the experience of the race. Through its intensified assertion of individualism it saves us from monotony of type. In its rejection of the current notions about morality, it is one with the higher ethics.”
—Oscar Wilde (18541900)
Related Subjects
Related Phrases
Related Words