Quiver (mathematics) - Category-theoretic Definition

Category-theoretic Definition

The above definition is based in set theory; the category-theoretic definition generalizes this into a functor from the free quiver to the category of sets.

The free quiver (also called the walking quiver, Kronecker quiver, 2-Kronecker quiver or Kronecker category) Q is a category with two objects, and four morphisms: The objects are V and E. The four morphisms are s:EV, t:EV, and the identity morphisms idV:VV and idE:EE. That is, the free quiver is

E
\;\begin{matrix} s \\ \rightrightarrows \\ t \end{matrix}\; V

A quiver is then a functor Γ:QSet.

More generally, a quiver in a category C is a functor Γ:QC. The category of quivers in C, Quiv(C), is the functor category where:

  • objects are functors Γ:QC,
  • morphisms are natural transformations between functors.

Note that Quiv is the category of presheaves on the opposite category QOp.

Read more about this topic:  Quiver (mathematics)

Famous quotes containing the word definition:

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)