Quintic Function

In mathematics, a quintic function is a function of the form

where a, b, c, d, e and f are members of a field, typically the rational numbers, the real numbers or the complex numbers, and a is nonzero. In other words, a quintic function is defined by a polynomial of degree five.

Setting g(x) = 0 and assuming a ≠ 0 produces a quintic equation of the form:

If a is zero but one of the other coefficients is non-zero, the equation is classified as either a quartic equation, cubic equation, quadratic equation or linear equation.

Because they have an odd degree, normal quintic functions appear similar to normal cubic functions when graphed, except they may possess an additional local maximum and local minimum each. The derivative of a quintic function is a quartic function.

Read more about Quintic Function:  Finding Roots of A Quintic Equation, Beyond Radicals

Famous quotes containing the word function:

    Philosophical questions are not by their nature insoluble. They are, indeed, radically different from scientific questions, because they concern the implications and other interrelations of ideas, not the order of physical events; their answers are interpretations instead of factual reports, and their function is to increase not our knowledge of nature, but our understanding of what we know.
    Susanne K. Langer (1895–1985)