Properties
It is a consequence of the axioms that a left (right) Quillen functor preserves weak equivalences between cofibrant (fibrant) objects. The total derived functor theorem of Quillen says that the total left derived functor
- LF: Ho(C) → Ho(D)
is a left adjoint to the total right derived functor
- RG: Ho(D) → Ho(C).
This adjunction (LF, RG) is called the derived adjunction.
If (F, G) is a Quillen adjunction as above such that
- F(c) → d
is a weak equivalence in D if and only if
- c → G(d)
is a weak equivalence in C then it is called a Quillen equivalence of the closed model categories C and D. In this case the derived adjunction is an adjoint equivalence of categories so that
- LF(c) → d
is an isomorphism in Ho(D) if and only if
- c → RG(d)
is an isomorphism in Ho(C).
Read more about this topic: Quillen Adjunction
Famous quotes containing the word properties:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)