Qubit Field Theory - Theory

Theory

In many ordinary quantum field theories, constraining one observable to a fixed value results in the uncertainty of the other observable being infinite (c.f. uncertainty principle), and as a consequence there is potentially an infinite amount of information involved. In the situation of the standard position-momentum commutation (where the uncertainty principle is most commonly cited), this implies that a fixed, finite, volume of space has an infinite capacity to store information. However, Bekenstein's bound hints that the information storage capacity ought to be finite. Qubit field theory seeks to resolve this issue by removing the commutation restriction, allowing the capacity to store information to be finite; hence the name qubit, which derives from quantum-bit or quantised-bit.

David Deutsch has presented a group of qubit field theories which, despite not requiring commutation of certain observables, still presents the same observable results as ordinary quantum field theory.

Read more about this topic:  Qubit Field Theory

Famous quotes containing the word theory:

    Many people have an oversimplified picture of bonding that could be called the “epoxy” theory of relationships...if you don’t get properly “glued” to your babies at exactly the right time, which only occurs very soon after birth, then you will have missed your chance.
    Pamela Patrick Novotny (20th century)

    Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.
    Willard Van Orman Quine (b. 1908)

    Frankly, these days, without a theory to go with it, I can’t see a painting.
    Tom Wolfe (b. 1931)