Qubit Field Theory - Theory

Theory

In many ordinary quantum field theories, constraining one observable to a fixed value results in the uncertainty of the other observable being infinite (c.f. uncertainty principle), and as a consequence there is potentially an infinite amount of information involved. In the situation of the standard position-momentum commutation (where the uncertainty principle is most commonly cited), this implies that a fixed, finite, volume of space has an infinite capacity to store information. However, Bekenstein's bound hints that the information storage capacity ought to be finite. Qubit field theory seeks to resolve this issue by removing the commutation restriction, allowing the capacity to store information to be finite; hence the name qubit, which derives from quantum-bit or quantised-bit.

David Deutsch has presented a group of qubit field theories which, despite not requiring commutation of certain observables, still presents the same observable results as ordinary quantum field theory.

Read more about this topic:  Qubit Field Theory

Famous quotes containing the word theory:

    There never comes a point where a theory can be said to be true. The most that one can claim for any theory is that it has shared the successes of all its rivals and that it has passed at least one test which they have failed.
    —A.J. (Alfred Jules)

    We have our little theory on all human and divine things. Poetry, the workings of genius itself, which, in all times, with one or another meaning, has been called Inspiration, and held to be mysterious and inscrutable, is no longer without its scientific exposition. The building of the lofty rhyme is like any other masonry or bricklaying: we have theories of its rise, height, decline and fall—which latter, it would seem, is now near, among all people.
    Thomas Carlyle (1795–1881)

    Psychotherapy—The theory that the patient will probably get well anyway, and is certainly a damned ijjit.
    —H.L. (Henry Lewis)