Infinite-dimensional Quaternionic Projective Space
The space is the classifying space BS3. The homotopy groups of are given by . These groups are known to be very complex and in particular they are non-zero for infinitely many values of . However, we do have that if and if . It follows that rationally, i.e. after localisation of a space, is an Eilenberg–Maclane space . That is . (cf. the example K(Z,2)). See rational homotopy theory.
Read more about this topic: Quaternionic Projective Space
Famous quotes containing the word space:
“Thus all our dignity lies in thought. Through it we must raise ourselves, and not through space or time, which we cannot fill. Let us endeavor, then, to think well: this is the mainspring of morality.”
—Blaise Pascal (16231662)