Infinite-dimensional Quaternionic Projective Space
The space is the classifying space BS3. The homotopy groups of are given by . These groups are known to be very complex and in particular they are non-zero for infinitely many values of . However, we do have that if and if . It follows that rationally, i.e. after localisation of a space, is an Eilenberg–Maclane space . That is . (cf. the example K(Z,2)). See rational homotopy theory.
Read more about this topic: Quaternionic Projective Space
Famous quotes containing the word space:
“In bourgeois society, the French and the industrial revolution transformed the authorization of political space. The political revolution put an end to the formalized hierarchy of the ancien regimĂ©.... Concurrently, the industrial revolution subverted the social hierarchy upon which the old political space was based. It transformed the experience of society from one of vertical hierarchy to one of horizontal class stratification.”
—Donald M. Lowe, U.S. historian, educator. History of Bourgeois Perception, ch. 4, University of Chicago Press (1982)