Quasithin Group

In mathematics, a quasithin group is roughly a finite simple group of characteristic 2 type and width 2. Here characteristic 2 type means that its centralizers of involutions resemble those of groups of Lie type over fields of characteristic 2, and the width is roughly the maximal rank of an abelian group of odd order normalizing a non-trivial 2-subgroup of G. When G is a group of Lie type of characteristic 2 type, the width is usually the rank (the dimension of a maximal torus of the algebraic group).

Read more about Quasithin Group:  Classification

Famous quotes containing the word group:

    The boys think they can all be athletes, and the girls think they can all be singers. That’s the way to fame and success. ...as a group blacks must give up their illusions.
    Kristin Hunter (b. 1931)