Properties
For a morphism f, the following properties are true.
- If f is quasi-finite, then the induced map fred between reduced schemes is quasi-finite.
- If f is a closed immersion, then f is quasi-finite.
- If X is noetherian and f is an immersion, then f is quasi-finite.
- If g : Y → Z, and if g ∘ f is quasi-finite, then f is quasi-finite if any of the following are true:
- g is separated,
- X is noetherian,
- X ×Z Y is locally noetherian.
Quasi-finiteness is preserved by base change. The composite and fiber product of quasi-finite morphisms is quasi-finite.
If f is unramified at a point x, then f is quasi-finite at x. Conversely, if f is quasi-finite at x, and if also, the local ring of x in the fiber f−1(f(x)), is a field and a finite separable extension of κ(f(x)), then f is unramified at x.
Finite morphisms are quasi-finite. A quasi-finite proper morphism locally of finite presentation is finite.
A generalized form of Zariski Main Theorem is the following: Suppose Y is quasi-compact and quasi-separated. Let f be quasi-finite, separated and of finite presentation. Then f factors as where the first morphism is an open immersion and the second is finite. (X is open in a finite scheme over Y.)
Read more about this topic: Quasi-finite Morphism
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)