Quasi-arithmetic Mean - Definition

Definition

If f is a function which maps an interval of the real line to the real numbers, and is both continuous and injective then we can define the f-mean of two numbers

as

For numbers

,

the f-mean is

We require f to be injective in order for the inverse function to exist. Since is defined over an interval, lies within the domain of .

Since f is injective and continuous, it follows that f is a strictly monotonic function, and therefore that the f-mean is neither larger than the largest number of the tuple nor smaller than the smallest number in .

Read more about this topic:  Quasi-arithmetic Mean

Famous quotes containing the word definition:

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)