Quantum Well - Applications

Applications

Because of their quasi-two dimensional nature, electrons in quantum wells have a density of states as a function of energy that has distinct steps, versus a smooth square root dependence that is found in bulk materials. Additionally, the effective mass of holes in the valence band is changed to more closely match that of electrons in the conduction band. These two factors, together with the reduced amount of active material in quantum wells, leads to better performance in optical devices such as laser diodes. As a result quantum wells are in wide use in diode lasers, including red lasers for DVDs and laser pointers, infra-red lasers in fiber optic transmitters, or in blue lasers. They are also used to make HEMTs (High Electron Mobility Transistors), which are used in low-noise electronics. Quantum well infrared photodetectors are also based on quantum wells, and are used for infrared imaging.

By doping either the well itself, or preferably, the barrier of a quantum well with donor impurities, a two-dimensional electron gas (2DEG) may be formed. Such as structure forms the conducting channel of a HEMT, and has interesting properties at low temperature. One such property is the quantum Hall effect, seen at high magnetic fields. Acceptor dopants can lead to a two-dimensional hole gas (2DHG).

Quantum well can be fabricated as saturable absorber utilizing its saturable absorption property. Saturable absorber is widely used in passively mode locking lasers. Semiconductor saturable absorbers (SESAMs) were used for laser mode-locking as early as 1974 when p-type germanium is used to mode lock a CO2 laser which generated pulses ~500 ps. Modern SESAMs are III-V semiconductor single quantum well (SQW) or multiple quantum wells grown on semiconductor distributed Bragg reflectors (DBRs). They were initially used in a Resonant Pulse Modelocking (RPM) scheme as starting mechanisms for Ti:sapphire lasers which employed KLM as a fast saturable absorber. RPM is another coupled-cavity mode-locking technique. Different from APM lasers which employ non-resonant Kerr-type phase nonlinearity for pulse shortening, RPM employs the amplitude nonlinearity provided by the resonant band filling effects of semiconductors. SESAMs were soon developed into intracavity saturable absorber devices because of more inherent simplicity with this structure. Since then, the use of SESAMs has enabled the pulse durations, average powers, pulse energies and repetition rates of ultrafast solid-state lasers to be improved by several orders of magnitude. Average power of 60 W and repetition rate up to 160 GHz were obtained. By using SESAM-assisted KLM, sub-6 fs pulses directly from a Ti:sapphire oscillator was achieved. A major advantage SESAMs have over other saturable absorber techniques is that absorber parameters can be easily controlled over a wide range of values. For example, saturation fluence can be controlled by varying the reflectivity of the top reflector while modulation depth and recovery time can be tailored by changing the low temperature growing conditions for the absorber layers. This freedom of design has further extended the application of SESAMs into modelocking of fibre lasers where a relatively high modulation depth is needed to ensure self-starting and operation stability. Fibre lasers working at ~1 μm and 1.5 μm were successfully demonstrated.

Read more about this topic:  Quantum Well