Quantum Turing Machine

A quantum Turing machine (QTM), also a universal quantum computer, is an abstract machine used to model the effect of a quantum computer. It provides a very simple model which captures all of the power of quantum computation. Any quantum algorithm can be expressed formally as a particular quantum Turing machine. Such Turing machines were first proposed in a 1985 paper written by Oxford University physicist David Deutsch suggesting quantum gates could function in a similar fashion to traditional digital computing binary logic gates.

Quantum Turing machines are not always used for analyzing quantum computation; the quantum circuit is a more common model; these models are computationally equivalent.

Quantum Turing machines can be related to classical and probabilistic Turing machines in a framework based on transition matrices, shown by Lance Fortnow.

Iriyama, Ohya, and Volovich have developed a model of a Linear Quantum Turing Machine (LQTM). This is a generalization of a classical QTM that has mixed states and that allows irreversible transition functions. These allow the representation of quantum measurements without classical outcomes.

A quantum Turing machine with postselection was defined by Scott Aaronson, who showed that the class of polynomial time on such a machine (PostBQP) is equal to the classical complexity class PP.

Famous quotes containing the words quantum and/or machine:

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    A multitude of little superfluous precautions engender here a population of deputies and sub-officials, each of whom acquits himself with an air of importance and a rigorous precision, which seemed to say, though everything is done with much silence, “Make way, I am one of the members of the grand machine of state.”
    Marquis De Custine (1790–1857)