Expectation
From classical probability theory, we know that the expectation of a random variable X is completely determined by its distribution DX by
assuming, of course, that the random variable is integrable or that the random variable is non-negative. Similarly, let A be an observable of a quantum mechanical system. A is given by a densely defined self-adjoint operator on H. The spectral measure of A defined by
uniquely determines A and conversely, is uniquely determined by A. EA is a boolean homomorphism from the Borel subsets of R into the lattice Q of self-adjoint projections of H. In analogy with probability theory, given a state S, we introduce the distribution of A under S which is the probability measure defined on the Borel subsets of R by
Similarly, the expected value of A is defined in terms of the probability distribution DA by
Note that this expectation is relative to the mixed state S which is used in the definition of DA.
Remark. For technical reasons, one needs to consider separately the positive and negative parts of A defined by the Borel functional calculus for unbounded operators.
One can easily show:
Note that if S is a pure state corresponding to the vector ψ,
Read more about this topic: Quantum Statistical Mechanics
Famous quotes containing the word expectation:
“A youthful mind is seldom totally free from ambition; to curb that, is the first step to contentment, since to diminish expectation is to increase enjoyment.”
—Frances Burney (17521840)
“For, the expectation of gratitude is mean, and is continually punished by the total insensibility of the obliged person. It is a great happiness to get off without injury and heart-burning, from one who has had the ill luck to be served by you. It is a very onerous business, this being served, and the debtor naturally wishes to give you a slap.”
—Ralph Waldo Emerson (18031882)
“No expectation fails there,
No pleasing habit ends,
No man grows old, no girl grows cold,
But friends walk by friends.”
—William Butler Yeats (18651939)