Quantum Relative Entropy - Definition

Definition

As with many other objects in quantum information theory, quantum relative entropy is defined by extending the classical definition from probability distributions to density matrices. Let ρ be a density matrix. The von Neumann entropy of ρ, which is the quantum mechanical analog of the Shannon entropy, is given by

For two density matrices ρ and σ, the quantum relative entropy of ρ with respect to σ is defined by


S(\rho \| \sigma) = - \operatorname{Tr} \rho \log \sigma - S(\rho) = \operatorname{Tr} \rho \log \rho - \operatorname{Tr} \rho \log \sigma = \operatorname{Tr}\rho (\log \rho - \log \sigma).

We see that, when the states are classical, i.e. ρσ = σρ, the definition coincides with the classical case.

Read more about this topic:  Quantum Relative Entropy

Famous quotes containing the word definition:

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)