Concepts of Quantum Optics
According to quantum theory, light may be considered not only as an electro-magnetic wave but also as a "stream" of particles called photons which travel with c, the vacuum speed of light. These particles should not be considered to be classical billiard balls, but as quantum mechanical particles described by a wavefunction spread over a finite region.
Each particle carries one quantum of energy equal to hf, where h is Planck's constant and f is the frequency of the light. The postulation of the quantization of light by Max Planck in 1899 and the discovery of the general validity of this idea in Albert Einstein's 1905 explanation of the photoelectric effect soon led physicists to realize the possibility of population inversion and the possibility of the laser.
This kind of use of statistical mechanics is the fundament of most concepts of quantum optics: Light is described in terms of field operators for creation and annihilation of photons—i.e. in the language of quantum electrodynamics.
A frequently encountered state of the light field is the coherent state as introduced by George Sudarshan in 1963. This state, which can be used to approximately describe the output of a single-frequency laser well above the laser threshold, exhibits Poissonian photon number statistics. Via certain nonlinear interactions, a coherent state can be transformed into a squeezed coherent state, which can exhibit super- or sub- Poissonean photon statistics. Such light is called squeezed light. Other important quantum aspects are related to correlations of photon statistics between different beams. For example, parametric nonlinear processes can generate so-called twin beams, where ideally each photon of one beam is associated with a photon in the other beam.
Atoms are considered as quantum mechanical oscillators with a discrete energy spectrum with the transitions between the energy eigenstates being driven by the absorption or emission of light according to Einstein's theory with the oscillator strength depending on the quantum numbers of the states.
For solid state matter one uses the energy band models of solid state physics. This is important as understanding how light is detected (typically by a solid-state device that absorbs it) is crucial for understanding experiments.
Read more about this topic: Quantum Optics
Famous quotes containing the words concepts of, concepts and/or quantum:
“Germany collapsed as a result of having engaged in a struggle for empire with the concepts of provincial politics.”
—Albert Camus (19131960)
“During our twenties...we act toward the new adulthood the way sociologists tell us new waves of immigrants acted on becoming Americans: we adopt the host cultures values in an exaggerated and rigid fashion until we can rethink them and make them our own. Our idea of what adults are and what were supposed to be is composed of outdated childhood concepts brought forward.”
—Roger Gould (20th century)
“A personality is an indefinite quantum of traits which is subject to constant flux, change, and growth from the birth of the individual in the world to his death. A character, on the other hand, is a fixed and definite quantum of traits which, though it may be interpreted with slight differences from age to age and actor to actor, is nevertheless in its essentials forever fixed.”
—Hubert C. Heffner (19011985)