Quantum Optics - Concepts of Quantum Optics

Concepts of Quantum Optics

According to quantum theory, light may be considered not only as an electro-magnetic wave but also as a "stream" of particles called photons which travel with c, the vacuum speed of light. These particles should not be considered to be classical billiard balls, but as quantum mechanical particles described by a wavefunction spread over a finite region.

Each particle carries one quantum of energy equal to hf, where h is Planck's constant and f is the frequency of the light. The postulation of the quantization of light by Max Planck in 1899 and the discovery of the general validity of this idea in Albert Einstein's 1905 explanation of the photoelectric effect soon led physicists to realize the possibility of population inversion and the possibility of the laser.

This kind of use of statistical mechanics is the fundament of most concepts of quantum optics: Light is described in terms of field operators for creation and annihilation of photons—i.e. in the language of quantum electrodynamics.

A frequently encountered state of the light field is the coherent state as introduced by George Sudarshan in 1963. This state, which can be used to approximately describe the output of a single-frequency laser well above the laser threshold, exhibits Poissonian photon number statistics. Via certain nonlinear interactions, a coherent state can be transformed into a squeezed coherent state, which can exhibit super- or sub- Poissonean photon statistics. Such light is called squeezed light. Other important quantum aspects are related to correlations of photon statistics between different beams. For example, parametric nonlinear processes can generate so-called twin beams, where ideally each photon of one beam is associated with a photon in the other beam.

Atoms are considered as quantum mechanical oscillators with a discrete energy spectrum with the transitions between the energy eigenstates being driven by the absorption or emission of light according to Einstein's theory with the oscillator strength depending on the quantum numbers of the states.

For solid state matter one uses the energy band models of solid state physics. This is important as understanding how light is detected (typically by a solid-state device that absorbs it) is crucial for understanding experiments.

Read more about this topic:  Quantum Optics

Famous quotes containing the words concepts of, concepts and/or quantum:

    Institutional psychiatry is a continuation of the Inquisition. All that has really changed is the vocabulary and the social style. The vocabulary conforms to the intellectual expectations of our age: it is a pseudo-medical jargon that parodies the concepts of science. The social style conforms to the political expectations of our age: it is a pseudo-liberal social movement that parodies the ideals of freedom and rationality.
    Thomas Szasz (b. 1920)

    When you have broken the reality into concepts you never can reconstruct it in its wholeness.
    William James (1842–1910)

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)