Mathematically Equivalent Formulations of Quantum Mechanics
There are numerous mathematically equivalent formulations of quantum mechanics. One of the oldest and most commonly used formulations is the "transformation theory" proposed by the late Cambridge theoretical physicist Paul Dirac, which unifies and generalizes the two earliest formulations of quantum mechanics - matrix mechanics (invented by Werner Heisenberg) and wave mechanics (invented by Erwin Schrödinger).
Especially since Werner Heisenberg was awarded the Nobel Prize in Physics in 1932 for the creation of quantum mechanics, the role of Max Born in the development of QM has become somewhat confused and overlooked. A 2005 biography of Born details his role as the creator of the matrix formulation of quantum mechanics. This fact was recognized in a paper that Heisenberg himself published in 1940 honoring Max Planck. and In the matrix formulation, the instantaneous state of a quantum system encodes the probabilities of its measurable properties, or "observables". Examples of observables include energy, position, momentum, and angular momentum. Observables can be either continuous (e.g., the position of a particle) or discrete (e.g., the energy of an electron bound to a hydrogen atom). An alternative formulation of quantum mechanics is Feynman's path integral formulation, in which a quantum-mechanical amplitude is considered as a sum over all possible histories between the initial and final states. This is the quantum-mechanical counterpart of the action principle in classical mechanics.
Read more about this topic: Quantum Mechanics
Famous quotes containing the words equivalent, quantum and/or mechanics:
“In truth, politeness is artificial good humor, it covers the natural want of it, and ends by rendering habitual a substitute nearly equivalent to the real virtue.”
—Thomas Jefferson (17431826)
“The receipt to make a speaker, and an applauded one too, is short and easy.Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“the moderate Aristotelian city
Of darning and the Eight-Fifteen, where Euclids geometry
And Newtons mechanics would account for our experience,
And the kitchen table exists because I scrub it.”
—W.H. (Wystan Hugh)