Quantum Mechanics - Interactions With Other Scientific Theories

Interactions With Other Scientific Theories

The rules of quantum mechanics are fundamental. They assert that the state space of a system is a Hilbert space, and that observables of that system are Hermitian operators acting on that space—although they do not tell us which Hilbert space or which operators. These can be chosen appropriately in order to obtain a quantitative description of a quantum system. An important guide for making these choices is the correspondence principle, which states that the predictions of quantum mechanics reduce to those of classical mechanics when a system moves to higher energies or—equivalently—larger quantum numbers, i.e. whereas a single particle exhibits a degree of randomness, in systems incorporating millions of particles averaging takes over and, at the high energy limit, the statistical probability of random behaviour approaches zero. In other words, classical mechanics is simply a quantum mechanics of large systems. This "high energy" limit is known as the classical or correspondence limit. One can even start from an established classical model of a particular system, then attempt to guess the underlying quantum model that would give rise to the classical model in the correspondence limit.

List of unsolved problems in physics
In the correspondence limit of quantum mechanics: Is there a preferred interpretation of quantum mechanics? How does the quantum description of reality, which includes elements such as the "superposition of states" and "wavefunction collapse", give rise to the reality we perceive?

When quantum mechanics was originally formulated, it was applied to models whose correspondence limit was non-relativistic classical mechanics. For instance, the well-known model of the quantum harmonic oscillator uses an explicitly non-relativistic expression for the kinetic energy of the oscillator, and is thus a quantum version of the classical harmonic oscillator.

Early attempts to merge quantum mechanics with special relativity involved the replacement of the Schrödinger equation with a covariant equation such as the Klein-Gordon equation or the Dirac equation. While these theories were successful in explaining many experimental results, they had certain unsatisfactory qualities stemming from their neglect of the relativistic creation and annihilation of particles. A fully relativistic quantum theory required the development of quantum field theory, which applies quantization to a field (rather than a fixed set of particles). The first complete quantum field theory, quantum electrodynamics, provides a fully quantum description of the electromagnetic interaction. The full apparatus of quantum field theory is often unnecessary for describing electrodynamic systems. A simpler approach, one that has been employed since the inception of quantum mechanics, is to treat charged particles as quantum mechanical objects being acted on by a classical electromagnetic field. For example, the elementary quantum model of the hydrogen atom describes the electric field of the hydrogen atom using a classical Coulomb potential. This "semi-classical" approach fails if quantum fluctuations in the electromagnetic field play an important role, such as in the emission of photons by charged particles.

Quantum field theories for the strong nuclear force and the weak nuclear force have also been developed. The quantum field theory of the strong nuclear force is called quantum chromodynamics, and describes the interactions of subnuclear particles such as quarks and gluons. The weak nuclear force and the electromagnetic force were unified, in their quantized forms, into a single quantum field theory (known as electroweak theory), by the physicists Abdus Salam, Sheldon Glashow and Steven Weinberg. These three men shared the Nobel Prize in Physics in 1979 for this work.

It has proven difficult to construct quantum models of gravity, the remaining fundamental force. Semi-classical approximations are workable, and have led to predictions such as Hawking radiation. However, the formulation of a complete theory of quantum gravity is hindered by apparent incompatibilities between general relativity (the most accurate theory of gravity currently known) and some of the fundamental assumptions of quantum theory. The resolution of these incompatibilities is an area of active research, and theories such as string theory are among the possible candidates for a future theory of quantum gravity.

Classical mechanics has also been extended into the complex domain, with complex classical mechanics exhibiting behaviors similar to quantum mechanics.

Read more about this topic:  Quantum Mechanics

Famous quotes containing the words interactions with, interactions, scientific and/or theories:

    Whereas children can learn from their interactions with their parents how to get along in one sort of social hierarchy—that of the family—it is from their interactions with peers that they can best learn how to survive among equals in a wide range of social situations.
    Zick Rubin (20th century)

    The exercise of power is determined by thousands of interactions between the world of the powerful and that of the powerless, all the more so because these worlds are never divided by a sharp line: everyone has a small part of himself in both.
    Václav Havel (b. 1936)

    As in political revolutions, so in paradigm choice—there is no standard higher than the assent of the relevant community. To discover how scientific revolutions are effected, we shall therefore have to examine not only the impact of nature and of logic, but also the techniques of persuasive argumentation effective within the quite special groups that constitute the community of scientists.
    Thomas S. Kuhn (b. 1922)

    It takes twenty or so years before a mother can know with any certainty how effective her theories have been—and even then there are surprises. The daily newspapers raise the most frightening questions of all for a mother of sons: Could my once sweet babes ever become violent men? Are my sons really who I think they are?
    Mary Kay Blakely (20th century)