Non-relativistic Dynamics
In non-relativistic physical systems, there is no ambiguity in referring to time evolution since there is a global time parameter. Moreover an isolated quantum system evolves in a deterministic way: if the system is in a state S at time t then at time s > t, the system is in a state Fs,t(S). Moreover, we assume
- The dependence is reversible: The operators Fs,t are bijective.
- The dependence is homogeneous: Fs,t = Fs − t,0.
- The dependence is convexity preserving: That is, each Fs,t(S) is convexity preserving.
- The dependence is weakly continuous: The mapping R→ R given by t → Tr(Fs,t(S) E) is continuous for every E in Q.
By Kadison's theorem, there is a 1-parameter family of unitary or anti-unitary operators {Ut}t such that
In fact,
Theorem. Under the above assumptions, there is a strongly continuous 1-parameter group of unitary operators {Ut}t such that the above equation holds.
Note that it follows easily from uniqueness from Kadison's theorem that
where σ(t,s) has modulus 1. Now the square of an anti-unitary is a unitary, so that all the Ut are unitary. The remainder of the argument shows that σ(t,s) can be chosen to be 1 (by modifying each Ut by a scalar of modulus 1.)
Read more about this topic: Quantum Logic
Famous quotes containing the word dynamics:
“Anytime we react to behavior in our children that we dislike in ourselves, we need to proceed with extreme caution. The dynamics of everyday family life also have a way of repeating themselves.”
—Cathy Rindner Tempelsman (20th century)