Quantum heterostructure is a heterostructure in a substrate (usually a semiconductor material), where size restricts the movements of the charge carriers forcing them into a quantum confinement. This leads to the formation of a set of discrete energy levels at which the carriers can exist. Quantum heterostructures have sharper density of states than structures of more conventional sizes.
Quantum heterostructures are important for fabrication of short-wavelength light-emitting diodes and diode lasers, and for other optoelectronic applications, e.g. high-efficiency photovoltaic cells.
Examples of quantum heterostructures confining the carriers in quasi-two, -one and -zero dimensions are:
- Quantum wells
- Quantum wires
- Quantum dots
Famous quotes containing the word quantum:
“A personality is an indefinite quantum of traits which is subject to constant flux, change, and growth from the birth of the individual in the world to his death. A character, on the other hand, is a fixed and definite quantum of traits which, though it may be interpreted with slight differences from age to age and actor to actor, is nevertheless in its essentials forever fixed.”
—Hubert C. Heffner (19011985)