Compact Matrix Quantum Groups
See also compact quantum group.
S.L. Woronowicz introduced compact matrix quantum groups. Compact matrix quantum groups are abstract structures on which the "continuous functions" on the structure are given by elements of a C*-algebra. The geometry of a compact matrix quantum group is a special case of a noncommutative geometry.
The continuous complex-valued functions on a compact Hausdorff topological space form a commutative C*-algebra. By the Gelfand theorem, a commutative C*-algebra is isomorphic to the C*-algebra of continuous complex-valued functions on a compact Hausdorff topological space, and the topological space is uniquely determined by the C*-algebra up to homeomorphism.
For a compact topological group, G, there exists a C*-algebra homomorphism Δ: C(G) → C(G) ⊗ C(G) (where C(G) ⊗ C(G) is the C*-algebra tensor product - the completion of the algebraic tensor product of C(G) and C(G)), such that Δ(f)(x, y) = f(xy) for all f ∈ C(G), and for all x, y ∈ G (where (f ⊗ g)(x, y) = f(x)g(y) for all f, g ∈ C(G) and all x, y ∈ G). There also exists a linear multiplicative mapping κ: C(G) → C(G), such that κ(f)(x) = f(x−1) for all f ∈ C(G) and all x ∈ G. Strictly, this does not make C(G) a Hopf algebra, unless G is finite. On the other hand, a finite-dimensional representation of G can be used to generate a *-subalgebra of C(G) which is also a Hopf *-algebra. Specifically, if is an n-dimensional representation of G, then for all i, j uij ∈ C(G) and
It follows that the *-algebra generated by uij for all i, j and κ(uij) for all i, j is a Hopf *-algebra: the counit is determined by ε(uij) = δij for all i, j (where δij is the Kronecker delta), the antipode is κ, and the unit is given by
As a generalization, a compact matrix quantum group is defined as a pair (C, fu), where C is a C*-algebra and is a matrix with entries in C such that
-
- The *-subalgebra, C0, of C, which is generated by the matrix elements of u, is dense in C;
-
- There exists a C*-algebra homomorphism called the comultiplication Δ: C → C ⊗ C (where C ⊗ C is the C*-algebra tensor product - the completion of the algebraic tensor product of C and C) such that for all i, j we have:
-
- There exists a linear antimultiplicative map κ: C0 → C0 (the coinverse) such that κ(κ(v*)*) = v for all v ∈ C0 and
where I is the identity element of C. Since κ is antimultiplicative, then κ(vw) = κ(w) κ(v) for all v, w in C0.
As a consequence of continuity, the comultiplication on C is coassociative.
In general, C is not a bialgebra, and C0 is a Hopf *-algebra.
Informally, C can be regarded as the *-algebra of continuous complex-valued functions over the compact matrix quantum group, and u can be regarded as a finite-dimensional representation of the compact matrix quantum group.
A representation of the compact matrix quantum group is given by a corepresentation of the Hopf *-algebra (a corepresentation of a counital coassociative coalgebra A is a square matrix with entries in A (so v belongs to M(n, A)) such that
for all i, j and ε(vij) = δij for all i, j). Furthermore, a representation v, is called unitary if the matrix for v is unitary (or equivalently, if κ(vij) = v*ij for all i, j).
An example of a compact matrix quantum group is SUμ(2), where the parameter μ is a positive real number. So SUμ(2) = (C(SUμ(2)), u), where C(SUμ(2)) is the C*-algebra generated by α and γ, subject to
and
so that the comultiplication is determined by ∆(α) = α ⊗ α − γ ⊗ γ*, ∆(γ) = α ⊗ γ + γ ⊗ α*, and the coinverse is determined by κ(α) = α*, κ(γ) = −μ−1γ, κ(γ*) = −μγ*, κ(α*) = α. Note that u is a representation, but not a unitary representation. u is equivalent to the unitary representation
Equivalently, SUμ(2) = (C(SUμ(2)), w), where C(SUμ(2)) is the C*-algebra generated by α and β, subject to
and
so that the comultiplication is determined by ∆(α) = α ⊗ α − μβ ⊗ β*, Δ(β) = α ⊗ β + β ⊗ α*, and the coinverse is determined by κ(α) = α*, κ(β) = −μ−1β, κ(β*) = −μβ*, κ(α*) = α. Note that w is a unitary representation. The realizations can be identified by equating .
When μ = 1, then SUμ(2) is equal to the algebra C(SU(2)) of functions on the concrete compact group SU(2).
Read more about this topic: Quantum Group
Famous quotes containing the words compact, matrix, quantum and/or groups:
“... in a history of spiritual rupture, a social compact built on fantasy and collective secrets, poetry becomes more necessary than ever: it keeps the underground aquifers flowing; it is the liquid voice that can wear through stone.”
—Adrienne Rich (b. 1929)
“In all cultures, the family imprints its members with selfhood. Human experience of identity has two elements; a sense of belonging and a sense of being separate. The laboratory in which these ingredients are mixed and dispensed is the family, the matrix of identity.”
—Salvador Minuchin (20th century)
“The receipt to make a speaker, and an applauded one too, is short and easy.Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“Women over fifty already form one of the largest groups in the population structure of the western world. As long as they like themselves, they will not be an oppressed minority. In order to like themselves they must reject trivialization by others of who and what they are. A grown woman should not have to masquerade as a girl in order to remain in the land of the living.”
—Germaine Greer (b. 1939)