Compact Matrix Quantum Groups
See also compact quantum group.
S.L. Woronowicz introduced compact matrix quantum groups. Compact matrix quantum groups are abstract structures on which the "continuous functions" on the structure are given by elements of a C*-algebra. The geometry of a compact matrix quantum group is a special case of a noncommutative geometry.
The continuous complex-valued functions on a compact Hausdorff topological space form a commutative C*-algebra. By the Gelfand theorem, a commutative C*-algebra is isomorphic to the C*-algebra of continuous complex-valued functions on a compact Hausdorff topological space, and the topological space is uniquely determined by the C*-algebra up to homeomorphism.
For a compact topological group, G, there exists a C*-algebra homomorphism Δ: C(G) → C(G) ⊗ C(G) (where C(G) ⊗ C(G) is the C*-algebra tensor product - the completion of the algebraic tensor product of C(G) and C(G)), such that Δ(f)(x, y) = f(xy) for all f ∈ C(G), and for all x, y ∈ G (where (f ⊗ g)(x, y) = f(x)g(y) for all f, g ∈ C(G) and all x, y ∈ G). There also exists a linear multiplicative mapping κ: C(G) → C(G), such that κ(f)(x) = f(x−1) for all f ∈ C(G) and all x ∈ G. Strictly, this does not make C(G) a Hopf algebra, unless G is finite. On the other hand, a finite-dimensional representation of G can be used to generate a *-subalgebra of C(G) which is also a Hopf *-algebra. Specifically, if is an n-dimensional representation of G, then for all i, j uij ∈ C(G) and
It follows that the *-algebra generated by uij for all i, j and κ(uij) for all i, j is a Hopf *-algebra: the counit is determined by ε(uij) = δij for all i, j (where δij is the Kronecker delta), the antipode is κ, and the unit is given by
As a generalization, a compact matrix quantum group is defined as a pair (C, fu), where C is a C*-algebra and is a matrix with entries in C such that
-
- The *-subalgebra, C0, of C, which is generated by the matrix elements of u, is dense in C;
-
- There exists a C*-algebra homomorphism called the comultiplication Δ: C → C ⊗ C (where C ⊗ C is the C*-algebra tensor product - the completion of the algebraic tensor product of C and C) such that for all i, j we have:
-
- There exists a linear antimultiplicative map κ: C0 → C0 (the coinverse) such that κ(κ(v*)*) = v for all v ∈ C0 and
where I is the identity element of C. Since κ is antimultiplicative, then κ(vw) = κ(w) κ(v) for all v, w in C0.
As a consequence of continuity, the comultiplication on C is coassociative.
In general, C is not a bialgebra, and C0 is a Hopf *-algebra.
Informally, C can be regarded as the *-algebra of continuous complex-valued functions over the compact matrix quantum group, and u can be regarded as a finite-dimensional representation of the compact matrix quantum group.
A representation of the compact matrix quantum group is given by a corepresentation of the Hopf *-algebra (a corepresentation of a counital coassociative coalgebra A is a square matrix with entries in A (so v belongs to M(n, A)) such that
for all i, j and ε(vij) = δij for all i, j). Furthermore, a representation v, is called unitary if the matrix for v is unitary (or equivalently, if κ(vij) = v*ij for all i, j).
An example of a compact matrix quantum group is SUμ(2), where the parameter μ is a positive real number. So SUμ(2) = (C(SUμ(2)), u), where C(SUμ(2)) is the C*-algebra generated by α and γ, subject to
and
so that the comultiplication is determined by ∆(α) = α ⊗ α − γ ⊗ γ*, ∆(γ) = α ⊗ γ + γ ⊗ α*, and the coinverse is determined by κ(α) = α*, κ(γ) = −μ−1γ, κ(γ*) = −μγ*, κ(α*) = α. Note that u is a representation, but not a unitary representation. u is equivalent to the unitary representation
Equivalently, SUμ(2) = (C(SUμ(2)), w), where C(SUμ(2)) is the C*-algebra generated by α and β, subject to
and
so that the comultiplication is determined by ∆(α) = α ⊗ α − μβ ⊗ β*, Δ(β) = α ⊗ β + β ⊗ α*, and the coinverse is determined by κ(α) = α*, κ(β) = −μ−1β, κ(β*) = −μβ*, κ(α*) = α. Note that w is a unitary representation. The realizations can be identified by equating .
When μ = 1, then SUμ(2) is equal to the algebra C(SU(2)) of functions on the concrete compact group SU(2).
Read more about this topic: Quantum Group
Famous quotes containing the words compact, matrix, quantum and/or groups:
“Take pains ... to write a neat round, plain hand, and you will find it a great convenience through life to write a small and compact hand as well as a fair and legible one.”
—Thomas Jefferson (17431826)
“The matrix is God?
In a manner of speaking, although it would be more accurate ... to say that the matrix has a God, since this beings omniscience and omnipotence are assumed to be limited to the matrix.
If it has limits, it isnt omnipotent.
Exactly.... Cyberspace exists, insofar as it can be said to exist, by virtue of human agency.”
—William Gibson (b. 1948)
“A personality is an indefinite quantum of traits which is subject to constant flux, change, and growth from the birth of the individual in the world to his death. A character, on the other hand, is a fixed and definite quantum of traits which, though it may be interpreted with slight differences from age to age and actor to actor, is nevertheless in its essentials forever fixed.”
—Hubert C. Heffner (19011985)
“Under weak government, in a wide, thinly populated country, in the struggle against the raw natural environment and with the free play of economic forces, unified social groups become the transmitters of culture.”
—Johan Huizinga (18721945)