Quantum Group - Bicrossproduct Quantum Groups

Bicrossproduct Quantum Groups

Whereas compact matrix pseudogroups are typically versions of Drinfeld-Jimbo quantum groups in a dual function algebra formulation, with additional structure, the bicrossproduct ones are a distinct second family of quantum groups of increasing importance as deformations of solvable rather than semisimple Lie groups. They are associated to Lie splittings of Lie algebras or local factorisations of Lie groups and can be viewed as the cross product or Mackey quantisation of one of the factors acting on the other for the algebra and a similar story for the coproduct Δ with the second factor acting back on the first. The very simplest nontrivial example corresponds to two copies of R locally acting on each other and results in a quantum group (given here in an algebraic form) with generators p, K, K-1, say, and coproduct

where h is the deformation parameter. This quantum group was linked to a toy model of Planck scale physics implementing Born reciprocity when viewed as a deformation of the Heisenberg algebra of quantum mechanics. Also, starting with any compact real form of a semisimple Lie algebra g its complexification as a real Lie algebra of twice the dimension splits into g and a certain solvable Lie algebra (the Iwasawa decomposition), and this provides a canonical bicrossproduct quantum group associated to g. For su(2) one obtains a quantum group deformation of the Euclidean group E(3) of motions in 3 dimensions.

Read more about this topic:  Quantum Group

Famous quotes containing the words quantum and/or groups:

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    As in political revolutions, so in paradigm choice—there is no standard higher than the assent of the relevant community. To discover how scientific revolutions are effected, we shall therefore have to examine not only the impact of nature and of logic, but also the techniques of persuasive argumentation effective within the quite special groups that constitute the community of scientists.
    Thomas S. Kuhn (b. 1922)