Definition
The quantum Fourier transform is the classical discrete Fourier transform applied to the vector of amplitudes of a quantum state. The classical (unitary) Fourier transform acts on a vector in, (x0, ..., xN−1) and maps it to the vector (y0, ..., yN−1) according to the formula:
where is a primitive Nth root of unity.
Similarly, the quantum Fourier transform acts on a quantum state and maps it to a quantum state according to the formula:
- .
This can also be expressed as the map
- .
Equivalently, the quantum Fourier transform can be viewed as a unitary matrix acting on quantum state vectors, where the unitary matrix is given by
.
Read more about this topic: Quantum Fourier Transform
Famous quotes containing the word definition:
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)