Quantum Fluctuation

In quantum physics, a quantum vacuum fluctuation (or quantum fluctuation or vacuum fluctuation) is the temporary change in the amount of energy in a point in space, arising from Werner Heisenberg's uncertainty principle.

According to one formulation of the principle, energy and time can be related by the relation

That means that conservation of energy can appear to be violated, but only for small times. This allows the creation of particle-antiparticle pairs of virtual particles. The effects of these particles are measurable, for example, in the effective charge of the electron, different from its "naked" charge.

In the modern view, energy is always conserved, but the eigenstates of the Hamiltonian (energy observable) are not the same as (i.e., the Hamiltonian doesn't commute with) the particle number operators.

Quantum fluctuations may have been very important in the origin of the structure of the universe: according to the model of inflation the ones that existed when inflation began were amplified and formed the seed of all current observed structure.

Read more about Quantum Fluctuation:  Quantum Fluctuations of A Field

Famous quotes containing the word quantum:

    The receipt to make a speaker, and an applauded one too, is short and easy.—Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)