Quantum Finite Automata - Geometric Generalizations

Geometric Generalizations

The above constructions indicate how the concept of a quantum finite automaton can be generalized to arbitrary topological spaces. For example, one may take some (N-dimensional) Riemann symmetric space to take the place of . In place of the unitary matrices, one uses the isometries of the Riemannian manifold, or, more generally, some set of open functions appropriate for the given topological space. The initial state may be taken to be a point in the space. The set of accept states can be taken to be some arbitrary subset of the topological space. One then says that a formal language is accepted by this topological automaton if the point, after iteration by the homeomorphisms, intersects the accept set. But, of course, this is nothing more than the standard definition of an M-automaton. The behaviour of topological automata is studied in the field of topological dynamics.

The quantum automaton differs from the topological automaton in that, instead of having a binary result (is the iterated point in, or not in, the final set?), one has a probability. The quantum probability is the (square of) the initial state projected onto some final state P; that is . But this probability amplitude is just a very simple function of the distance between the point and the point in, under the distance metric given by the Fubini-Study metric. To recap, the quantum probability of a language being accepted can be interpreted as a metric, with the probability of accept being unity, if the metric distance between the initial and final states is zero, and otherwise the probability of accept is less than one, if the metric distance is non-zero. Thus, it follows that the quantum finite automaton is just a special case of a geometric automaton or a metric automaton, where is generalized to some metric space, and the probability measure is replaced by a simple function of the metric on that space.

Read more about this topic:  Quantum Finite Automata

Famous quotes containing the word geometric:

    In mathematics he was greater
    Than Tycho Brahe, or Erra Pater:
    For he, by geometric scale,
    Could take the size of pots of ale;
    Resolve, by sines and tangents straight,
    If bread and butter wanted weight;
    And wisely tell what hour o’ th’ day
    The clock doth strike, by algebra.
    Samuel Butler (1612–1680)