Concept
Quantum systems can become entangled through various types of interactions (see section on methods below). If entangled, one object cannot be fully described without considering the other(s). They remain in a quantum superposition and share a single quantum state until a measurement is made.
An example of entanglement occurs when subatomic particles decay into other particles. These decay events obey the various conservation laws, and as a result, pairs of particles can be generated so that they are in some specific quantum states. For instance, a pair of these particles may be generated having a two-state spin: one must be spin up and the other must be spin down. This type of entangled pair, where the particles always have opposite spin, is known as the spin anti-correlated case, and if the probabilities for measuring each spin are equal, the pair is said to be in the singlet state.
If each of two hypothetical experimenters, Alice and Bob, has one of the particles that form an entangled pair, and Alice measures the spin of her particle, the measurement will be entirely unpredictable, with a 50% probability of the spin being up or down. But if Bob subsequently measures the spin of his particle, the measurement will be entirely predictable―always opposite to Alice's, hence perfectly anti-correlated.
So far in this example experiment, the correlation seen with aligned measurements (i.e., up and down only) can be simulated classically. To make an analogous experiment, a coin might be sliced along the circumference into two half-coins, in such a way that each half-coin is either "heads" or "tails", and each half-coin put in a separate envelope and distributed respectively to Alice and to Bob, randomly. If Alice then "measures" her half-coin, by opening her envelope, for her the measurement will be unpredictable, with a 50% probability of her half-coin being "heads" or "tails", and Bob's "measurement" of his half-coin will always be opposite, hence perfectly anti-correlated.
However, with quantum entanglement, if Alice and Bob measure the spin of their particles in directions other than just up or down, with the directions chosen to form a Bell's inequality, they can now observe a correlation that is fundamentally stronger than anything that is achievable in classical physics. Here, the classical simulation of the experiment breaks down because there are no "directions" other than heads or tails to be measured in the coins.
One might imagine that using a die instead of a coin could solve the problem, but the fundamental issue about measuring spin in different directions is that these measurements cannot have definite values at the same time―they are incompatible. In classical physics this does not make sense, since any number of properties can be measured simultaneously with arbitrary accuracy. Bell's theorem implies, and it has been proven mathematically, that compatible measurements cannot show Bell-like correlations, and thus entanglement is a fundamentally non-classical phenomenon.
Even when measurements of the entangled particles are made in moving relativistic reference frames, in which each respective measurement occurs before the other, the measurement results remain correlated.
In a very recent experiment, "delayed-choice entanglement swapping" has been used to decide whether two particles were entangled or not after they had already been measured.
Read more about this topic: Quantum Entanglement
Famous quotes containing the word concept:
“There is a concept that is the corrupter and destroyer of all others. I speak not of Evil, whose limited empire is that of ethics; I speak of the infinite.”
—Jorge Luis Borges (18991986)
“I think that Richard Nixon will go down in history as a true folk hero, who struck a vital blow to the whole diseased concept of the revered image and gave the American virtue of irreverence and skepticism back to the people.”
—William Burroughs (b. 1914)
“The heritage of the American Revolution is forgotten, and the American government, for better and for worse, has entered into the heritage of Europe as though it were its patrimonyunaware, alas, of the fact that Europes declining power was preceded and accompanied by political bankruptcy, the bankruptcy of the nation-state and its concept of sovereignty.”
—Hannah Arendt (19061975)